summaryrefslogtreecommitdiff
path: root/python-sewar.spec
blob: 8ced315cf1a379f1244735af3cb611b2701a685c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
%global _empty_manifest_terminate_build 0
Name:		python-sewar
Version:	0.4.5
Release:	1
Summary:	All image quality metrics you need in one package.
License:	MIT
URL:		https://github.com/andrewekhalel/sewar
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/90/90/71ad919f857cb3c069fe0e7865987e57879799b6be840091e20a1b8d354c/sewar-0.4.5.tar.gz
BuildArch:	noarch


%description
<a href="https://www.buymeacoffee.com/khalel" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>

# Sewar

[![Build Status](https://travis-ci.org/sachinpuranik99/sewar.svg?branch=master)](https://travis-ci.org/sachinpuranik99/sewar)
[![codecov](https://codecov.io/gh/sachinpuranik99/sewar/branch/master/graph/badge.svg)](https://codecov.io/gh/sachinpuranik99/sewar)

Sewar is a python package for image quality assessment using different metrics. You can check documentation [here](http://sewar.readthedocs.io/).


## Implemented metrics
- [x] Mean Squared Error (MSE) 
- [x] Root Mean Sqaured Error (RMSE)
- [x] Peak Signal-to-Noise Ratio (PSNR) [[1]](https://ieeexplore.ieee.org/abstract/document/1284395/)
- [x] Structural Similarity Index (SSIM) [[1]](https://ieeexplore.ieee.org/abstract/document/1284395/)
- [x] Universal Quality Image Index (UQI) [[2]](https://ieeexplore.ieee.org/document/995823/)
- [x] Multi-scale Structural Similarity Index (MS-SSIM) [[3]](https://ieeexplore.ieee.org/abstract/document/1292216/)
- [x] Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) [[4]](https://hal.archives-ouvertes.fr/hal-00395027/)
- [x] Spatial Correlation Coefficient (SCC) [[5]](https://www.tandfonline.com/doi/abs/10.1080/014311698215973)
- [x] Relative Average Spectral Error (RASE) [[6]](https://ieeexplore.ieee.org/document/1304896/)
- [x] Spectral Angle Mapper (SAM) [[7]](https://ntrs.nasa.gov/search.jsp?R=19940012238)
- [x] Spectral Distortion Index (D_lambda) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Spatial Distortion Index (D_S) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Quality with No Reference (QNR) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Visual Information Fidelity (VIF) [[9]](https://ieeexplore.ieee.org/abstract/document/1576816/)
- [x] Block Sensitive - Peak Signal-to-Noise Ratio (PSNR-B) [[10]](https://ieeexplore.ieee.org/abstract/document/5535179/)

## Todo
- [ ] Add command-line support for No-reference metrics

## Installation
Just as simple as
```
pip install sewar
```
## Example usage
a simple example to use UQI
```python
>>> from sewar.full_ref import uqi
>>> uqi(img1,img2)
0.9586952304831419
```

## Example usage for command line interface
```
sewar [metric] [GT path] [P path] (any extra parameters)
```
An example to use SSIM
```shell
foo@bar:~$ sewar ssim images/ground_truth.tif images/deformed.tif -ws 13
ssim : 0.8947009811410856
```
Available metrics list
```
mse, rmse, psnr, rmse_sw, uqi, ssim, ergas, scc, rase, sam, msssim, vifp, psnrb 
```

## Contributors
Special thanks to @sachinpuranik99 and @sunwj.

## References
[1] "Image quality assessment: from error visibility to structural similarity." 2004)<br/>
[2] "A universal image quality index." (2002)<br/>
[3] "Multiscale structural similarity for image quality assessment." (2003)<br/>
[4] "Quality of high resolution synthesised images: Is there a simple criterion?." (2000)<br/>
[5] "A wavelet transform method to merge Landsat TM and SPOT panchromatic data." (1998)<br/>
[6] "Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition." (2004)<br/>
[7] "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm." (1992)<br/>
[8] "Multispectral and panchromatic data fusion assessment without reference." (2008)<br/>
[9] "Image information and visual quality." (2006)<br/>
[10] "Quality Assessment of Deblocked Images" (2011)<br/>

%package -n python3-sewar
Summary:	All image quality metrics you need in one package.
Provides:	python-sewar
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-sewar
<a href="https://www.buymeacoffee.com/khalel" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>

# Sewar

[![Build Status](https://travis-ci.org/sachinpuranik99/sewar.svg?branch=master)](https://travis-ci.org/sachinpuranik99/sewar)
[![codecov](https://codecov.io/gh/sachinpuranik99/sewar/branch/master/graph/badge.svg)](https://codecov.io/gh/sachinpuranik99/sewar)

Sewar is a python package for image quality assessment using different metrics. You can check documentation [here](http://sewar.readthedocs.io/).


## Implemented metrics
- [x] Mean Squared Error (MSE) 
- [x] Root Mean Sqaured Error (RMSE)
- [x] Peak Signal-to-Noise Ratio (PSNR) [[1]](https://ieeexplore.ieee.org/abstract/document/1284395/)
- [x] Structural Similarity Index (SSIM) [[1]](https://ieeexplore.ieee.org/abstract/document/1284395/)
- [x] Universal Quality Image Index (UQI) [[2]](https://ieeexplore.ieee.org/document/995823/)
- [x] Multi-scale Structural Similarity Index (MS-SSIM) [[3]](https://ieeexplore.ieee.org/abstract/document/1292216/)
- [x] Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) [[4]](https://hal.archives-ouvertes.fr/hal-00395027/)
- [x] Spatial Correlation Coefficient (SCC) [[5]](https://www.tandfonline.com/doi/abs/10.1080/014311698215973)
- [x] Relative Average Spectral Error (RASE) [[6]](https://ieeexplore.ieee.org/document/1304896/)
- [x] Spectral Angle Mapper (SAM) [[7]](https://ntrs.nasa.gov/search.jsp?R=19940012238)
- [x] Spectral Distortion Index (D_lambda) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Spatial Distortion Index (D_S) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Quality with No Reference (QNR) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Visual Information Fidelity (VIF) [[9]](https://ieeexplore.ieee.org/abstract/document/1576816/)
- [x] Block Sensitive - Peak Signal-to-Noise Ratio (PSNR-B) [[10]](https://ieeexplore.ieee.org/abstract/document/5535179/)

## Todo
- [ ] Add command-line support for No-reference metrics

## Installation
Just as simple as
```
pip install sewar
```
## Example usage
a simple example to use UQI
```python
>>> from sewar.full_ref import uqi
>>> uqi(img1,img2)
0.9586952304831419
```

## Example usage for command line interface
```
sewar [metric] [GT path] [P path] (any extra parameters)
```
An example to use SSIM
```shell
foo@bar:~$ sewar ssim images/ground_truth.tif images/deformed.tif -ws 13
ssim : 0.8947009811410856
```
Available metrics list
```
mse, rmse, psnr, rmse_sw, uqi, ssim, ergas, scc, rase, sam, msssim, vifp, psnrb 
```

## Contributors
Special thanks to @sachinpuranik99 and @sunwj.

## References
[1] "Image quality assessment: from error visibility to structural similarity." 2004)<br/>
[2] "A universal image quality index." (2002)<br/>
[3] "Multiscale structural similarity for image quality assessment." (2003)<br/>
[4] "Quality of high resolution synthesised images: Is there a simple criterion?." (2000)<br/>
[5] "A wavelet transform method to merge Landsat TM and SPOT panchromatic data." (1998)<br/>
[6] "Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition." (2004)<br/>
[7] "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm." (1992)<br/>
[8] "Multispectral and panchromatic data fusion assessment without reference." (2008)<br/>
[9] "Image information and visual quality." (2006)<br/>
[10] "Quality Assessment of Deblocked Images" (2011)<br/>

%package help
Summary:	Development documents and examples for sewar
Provides:	python3-sewar-doc
%description help
<a href="https://www.buymeacoffee.com/khalel" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>

# Sewar

[![Build Status](https://travis-ci.org/sachinpuranik99/sewar.svg?branch=master)](https://travis-ci.org/sachinpuranik99/sewar)
[![codecov](https://codecov.io/gh/sachinpuranik99/sewar/branch/master/graph/badge.svg)](https://codecov.io/gh/sachinpuranik99/sewar)

Sewar is a python package for image quality assessment using different metrics. You can check documentation [here](http://sewar.readthedocs.io/).


## Implemented metrics
- [x] Mean Squared Error (MSE) 
- [x] Root Mean Sqaured Error (RMSE)
- [x] Peak Signal-to-Noise Ratio (PSNR) [[1]](https://ieeexplore.ieee.org/abstract/document/1284395/)
- [x] Structural Similarity Index (SSIM) [[1]](https://ieeexplore.ieee.org/abstract/document/1284395/)
- [x] Universal Quality Image Index (UQI) [[2]](https://ieeexplore.ieee.org/document/995823/)
- [x] Multi-scale Structural Similarity Index (MS-SSIM) [[3]](https://ieeexplore.ieee.org/abstract/document/1292216/)
- [x] Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) [[4]](https://hal.archives-ouvertes.fr/hal-00395027/)
- [x] Spatial Correlation Coefficient (SCC) [[5]](https://www.tandfonline.com/doi/abs/10.1080/014311698215973)
- [x] Relative Average Spectral Error (RASE) [[6]](https://ieeexplore.ieee.org/document/1304896/)
- [x] Spectral Angle Mapper (SAM) [[7]](https://ntrs.nasa.gov/search.jsp?R=19940012238)
- [x] Spectral Distortion Index (D_lambda) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Spatial Distortion Index (D_S) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Quality with No Reference (QNR) [[8]](https://www.ingentaconnect.com/content/asprs/pers/2008/00000074/00000002/art00003)
- [x] Visual Information Fidelity (VIF) [[9]](https://ieeexplore.ieee.org/abstract/document/1576816/)
- [x] Block Sensitive - Peak Signal-to-Noise Ratio (PSNR-B) [[10]](https://ieeexplore.ieee.org/abstract/document/5535179/)

## Todo
- [ ] Add command-line support for No-reference metrics

## Installation
Just as simple as
```
pip install sewar
```
## Example usage
a simple example to use UQI
```python
>>> from sewar.full_ref import uqi
>>> uqi(img1,img2)
0.9586952304831419
```

## Example usage for command line interface
```
sewar [metric] [GT path] [P path] (any extra parameters)
```
An example to use SSIM
```shell
foo@bar:~$ sewar ssim images/ground_truth.tif images/deformed.tif -ws 13
ssim : 0.8947009811410856
```
Available metrics list
```
mse, rmse, psnr, rmse_sw, uqi, ssim, ergas, scc, rase, sam, msssim, vifp, psnrb 
```

## Contributors
Special thanks to @sachinpuranik99 and @sunwj.

## References
[1] "Image quality assessment: from error visibility to structural similarity." 2004)<br/>
[2] "A universal image quality index." (2002)<br/>
[3] "Multiscale structural similarity for image quality assessment." (2003)<br/>
[4] "Quality of high resolution synthesised images: Is there a simple criterion?." (2000)<br/>
[5] "A wavelet transform method to merge Landsat TM and SPOT panchromatic data." (1998)<br/>
[6] "Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition." (2004)<br/>
[7] "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm." (1992)<br/>
[8] "Multispectral and panchromatic data fusion assessment without reference." (2008)<br/>
[9] "Image information and visual quality." (2006)<br/>
[10] "Quality Assessment of Deblocked Images" (2011)<br/>

%prep
%autosetup -n sewar-0.4.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-sewar -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.5-1
- Package Spec generated