1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
%global _empty_manifest_terminate_build 0
Name: python-sigProfilerPlotting
Version: 1.3.13
Release: 1
Summary: SigProfiler plotting tool
License: UCSD
URL: https://github.com/alexandrovlab/SigProfilerPlotting
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/98/95/fd0bb0bd9d674c499ee58628f2174f0cbb180bdad3d4b0a58f305928eeba/sigProfilerPlotting-1.3.13.tar.gz
BuildArch: noarch
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-scikit-learn
%description
[](https://osf.io/2aj6t/wiki/home/) [](https://opensource.org/licenses/BSD-2-Clause) [](https://app.travis-ci.com/AlexandrovLab/SigProfilerPlotting)
# SigProfilerPlotting
SigProfilerPlotting provides a standard tool for displaying all types of mutational signatures as well as all types of mutational patterns in cancer genomes. The tool seamlessly integrates with other SigProfiler tools.
**INTRODUCTION**
The purpose of this document is to provide a guide for using the SigProfilerPlotting framework and associated functions/tools to visualize the output from SigProfilerExtraction and SigProfilerSimulator. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/2aj6t/wiki/home.
For users that prefer working in an R environment, a wrapper package is provided and can be found and installed from: https://github.com/AlexandrovLab/SigProfilerPlottingR

**PREREQUISITES**
The framework is written in PYTHON, however, it also requires the following software with the given versions (or newer):
* PYTHON version 3.4 or newer
* SigProfilerMatrixGenerator (recommended)
**QUICK START GUIDE**
This section will guide you through the minimum steps required to plot mutational matrices:
1. Install the python package using pip:
```
pip install SigProfilerPlotting
```
2. From within a python session, you can now plot your mutational matrices as follows:
```python
$ python3
>> import sigProfilerPlotting as sigPlt
>> sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)
```
The available functions are listed below and the layout of the required parameters are as follows:
sigPlt.plotSBS(matrix_path, output_path, project, plot_type)
where matrix_path, output_path, project, and plot_type must be strings (surrounded by quotation marks, ex: "/Users/ebergstr/Desktop/test_sample").
3. The final plots are saved into the user-provided output folder.
## Single Base Substitution, Double Base Substitution, and Indel Plotting ##
**AVAILABLE FUNCTIONS**
```python
import sigProfilerPlotting as sigPlt
sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotDBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotID(matrix_path, output_path, project, plot_type, percentage=False)
```
## Copy Number and Structural Variant Plotting ##
```python
import sigProfilerPlotting as sigPlt
matrix_path = "./input/examples/samples/breast_cancer_samples_example.CNV48.all" #Output of CNVMatrixGenerator
output_path = "./output/examples/samples/"
project = "Breast"
```
**AVAILABLE FUNCTIONS**
*Multi-page pdf of CNV or SV signatures*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=True, aggregate=False) #plotting of CNV signatures
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage=True, aggregate=False) #plotting of SV signatures
```
*Multi-page pdf of CNV or SV counts*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=False) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=False) #plotting of SV counts
```
*Single pdf of CNV or SV counts per sample for a given cancer type/project*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=True) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage, aggregate=True) #plotting of SV counts
```
matrix_path -> path to the mutational matrix of interest
output_path -> desired output path
project -> name of unique sample set
plot_type -> context of the mutational matrix (96, 192, 78, 94, etc.)
percentage -> Boolean: plot the mutational matrix as percentages of the sample's total mutation count. Default is False
To create a sample portrait, ensure that you have a matrix for all required contexts (SBS-6, SBS-24, SBS-96, SBS-384, SBS-1536, DBS-78, DBS-312, ID-83, ID-28, ID-96)
```python
from sigProfilerPlotting import sample_portrait as sP
sP.samplePortrait(sample_matrices_path, output_path, project, percentage=False)
```
**EXAMPLE**
This package comes with an example test for each plot type. Run the script plot_example.py from within the downloaded repo after installation:
```python
python3 plot_example.py
```
This example will create plots for each context for each of the included four samples. These plots will be saved within the BRCA_plot/plots/ folder.
**CITATION**
Bergstrom EN, Huang MN, Mahto U, Barnes M, Stratton MR, Rozen SG, Alexandrov LB: SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 2019, 20:685
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6041-2
**COPYRIGHT**
Copyright (c) 2020, Erik Bergstrom [Alexandrov Lab] All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**CONTACT INFORMATION**
Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu
%package -n python3-sigProfilerPlotting
Summary: SigProfiler plotting tool
Provides: python-sigProfilerPlotting
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-sigProfilerPlotting
[](https://osf.io/2aj6t/wiki/home/) [](https://opensource.org/licenses/BSD-2-Clause) [](https://app.travis-ci.com/AlexandrovLab/SigProfilerPlotting)
# SigProfilerPlotting
SigProfilerPlotting provides a standard tool for displaying all types of mutational signatures as well as all types of mutational patterns in cancer genomes. The tool seamlessly integrates with other SigProfiler tools.
**INTRODUCTION**
The purpose of this document is to provide a guide for using the SigProfilerPlotting framework and associated functions/tools to visualize the output from SigProfilerExtraction and SigProfilerSimulator. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/2aj6t/wiki/home.
For users that prefer working in an R environment, a wrapper package is provided and can be found and installed from: https://github.com/AlexandrovLab/SigProfilerPlottingR

**PREREQUISITES**
The framework is written in PYTHON, however, it also requires the following software with the given versions (or newer):
* PYTHON version 3.4 or newer
* SigProfilerMatrixGenerator (recommended)
**QUICK START GUIDE**
This section will guide you through the minimum steps required to plot mutational matrices:
1. Install the python package using pip:
```
pip install SigProfilerPlotting
```
2. From within a python session, you can now plot your mutational matrices as follows:
```python
$ python3
>> import sigProfilerPlotting as sigPlt
>> sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)
```
The available functions are listed below and the layout of the required parameters are as follows:
sigPlt.plotSBS(matrix_path, output_path, project, plot_type)
where matrix_path, output_path, project, and plot_type must be strings (surrounded by quotation marks, ex: "/Users/ebergstr/Desktop/test_sample").
3. The final plots are saved into the user-provided output folder.
## Single Base Substitution, Double Base Substitution, and Indel Plotting ##
**AVAILABLE FUNCTIONS**
```python
import sigProfilerPlotting as sigPlt
sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotDBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotID(matrix_path, output_path, project, plot_type, percentage=False)
```
## Copy Number and Structural Variant Plotting ##
```python
import sigProfilerPlotting as sigPlt
matrix_path = "./input/examples/samples/breast_cancer_samples_example.CNV48.all" #Output of CNVMatrixGenerator
output_path = "./output/examples/samples/"
project = "Breast"
```
**AVAILABLE FUNCTIONS**
*Multi-page pdf of CNV or SV signatures*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=True, aggregate=False) #plotting of CNV signatures
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage=True, aggregate=False) #plotting of SV signatures
```
*Multi-page pdf of CNV or SV counts*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=False) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=False) #plotting of SV counts
```
*Single pdf of CNV or SV counts per sample for a given cancer type/project*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=True) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage, aggregate=True) #plotting of SV counts
```
matrix_path -> path to the mutational matrix of interest
output_path -> desired output path
project -> name of unique sample set
plot_type -> context of the mutational matrix (96, 192, 78, 94, etc.)
percentage -> Boolean: plot the mutational matrix as percentages of the sample's total mutation count. Default is False
To create a sample portrait, ensure that you have a matrix for all required contexts (SBS-6, SBS-24, SBS-96, SBS-384, SBS-1536, DBS-78, DBS-312, ID-83, ID-28, ID-96)
```python
from sigProfilerPlotting import sample_portrait as sP
sP.samplePortrait(sample_matrices_path, output_path, project, percentage=False)
```
**EXAMPLE**
This package comes with an example test for each plot type. Run the script plot_example.py from within the downloaded repo after installation:
```python
python3 plot_example.py
```
This example will create plots for each context for each of the included four samples. These plots will be saved within the BRCA_plot/plots/ folder.
**CITATION**
Bergstrom EN, Huang MN, Mahto U, Barnes M, Stratton MR, Rozen SG, Alexandrov LB: SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 2019, 20:685
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6041-2
**COPYRIGHT**
Copyright (c) 2020, Erik Bergstrom [Alexandrov Lab] All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**CONTACT INFORMATION**
Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu
%package help
Summary: Development documents and examples for sigProfilerPlotting
Provides: python3-sigProfilerPlotting-doc
%description help
[](https://osf.io/2aj6t/wiki/home/) [](https://opensource.org/licenses/BSD-2-Clause) [](https://app.travis-ci.com/AlexandrovLab/SigProfilerPlotting)
# SigProfilerPlotting
SigProfilerPlotting provides a standard tool for displaying all types of mutational signatures as well as all types of mutational patterns in cancer genomes. The tool seamlessly integrates with other SigProfiler tools.
**INTRODUCTION**
The purpose of this document is to provide a guide for using the SigProfilerPlotting framework and associated functions/tools to visualize the output from SigProfilerExtraction and SigProfilerSimulator. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/2aj6t/wiki/home.
For users that prefer working in an R environment, a wrapper package is provided and can be found and installed from: https://github.com/AlexandrovLab/SigProfilerPlottingR

**PREREQUISITES**
The framework is written in PYTHON, however, it also requires the following software with the given versions (or newer):
* PYTHON version 3.4 or newer
* SigProfilerMatrixGenerator (recommended)
**QUICK START GUIDE**
This section will guide you through the minimum steps required to plot mutational matrices:
1. Install the python package using pip:
```
pip install SigProfilerPlotting
```
2. From within a python session, you can now plot your mutational matrices as follows:
```python
$ python3
>> import sigProfilerPlotting as sigPlt
>> sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)
```
The available functions are listed below and the layout of the required parameters are as follows:
sigPlt.plotSBS(matrix_path, output_path, project, plot_type)
where matrix_path, output_path, project, and plot_type must be strings (surrounded by quotation marks, ex: "/Users/ebergstr/Desktop/test_sample").
3. The final plots are saved into the user-provided output folder.
## Single Base Substitution, Double Base Substitution, and Indel Plotting ##
**AVAILABLE FUNCTIONS**
```python
import sigProfilerPlotting as sigPlt
sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotDBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotID(matrix_path, output_path, project, plot_type, percentage=False)
```
## Copy Number and Structural Variant Plotting ##
```python
import sigProfilerPlotting as sigPlt
matrix_path = "./input/examples/samples/breast_cancer_samples_example.CNV48.all" #Output of CNVMatrixGenerator
output_path = "./output/examples/samples/"
project = "Breast"
```
**AVAILABLE FUNCTIONS**
*Multi-page pdf of CNV or SV signatures*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=True, aggregate=False) #plotting of CNV signatures
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage=True, aggregate=False) #plotting of SV signatures
```
*Multi-page pdf of CNV or SV counts*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=False) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=False) #plotting of SV counts
```
*Single pdf of CNV or SV counts per sample for a given cancer type/project*
```python
sigPlt.plotCNV(matrix_path, output_path, project, "pdf", percentage=False, aggregate=True) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project, "pdf", percentage, aggregate=True) #plotting of SV counts
```
matrix_path -> path to the mutational matrix of interest
output_path -> desired output path
project -> name of unique sample set
plot_type -> context of the mutational matrix (96, 192, 78, 94, etc.)
percentage -> Boolean: plot the mutational matrix as percentages of the sample's total mutation count. Default is False
To create a sample portrait, ensure that you have a matrix for all required contexts (SBS-6, SBS-24, SBS-96, SBS-384, SBS-1536, DBS-78, DBS-312, ID-83, ID-28, ID-96)
```python
from sigProfilerPlotting import sample_portrait as sP
sP.samplePortrait(sample_matrices_path, output_path, project, percentage=False)
```
**EXAMPLE**
This package comes with an example test for each plot type. Run the script plot_example.py from within the downloaded repo after installation:
```python
python3 plot_example.py
```
This example will create plots for each context for each of the included four samples. These plots will be saved within the BRCA_plot/plots/ folder.
**CITATION**
Bergstrom EN, Huang MN, Mahto U, Barnes M, Stratton MR, Rozen SG, Alexandrov LB: SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 2019, 20:685
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6041-2
**COPYRIGHT**
Copyright (c) 2020, Erik Bergstrom [Alexandrov Lab] All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**CONTACT INFORMATION**
Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu
%prep
%autosetup -n sigProfilerPlotting-1.3.13
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-sigProfilerPlotting -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.13-1
- Package Spec generated
|