summaryrefslogtreecommitdiff
path: root/python-siuba.spec
blob: 697f00a14c9b390fce87035ed19e8504c91cbe22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
%global _empty_manifest_terminate_build 0
Name:		python-siuba
Version:	0.4.2
Release:	1
Summary:	A package for quick, scrappy analyses with pandas and SQL
License:	MIT
URL:		https://github.com/machow/siuba
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/85/ac/6e5c4407971bd1a01846334d0a8a2bb103e24b0ac5955fea3abdc6c834a4/siuba-0.4.2.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-SQLAlchemy
Requires:	python3-PyYAML
Requires:	python3-plotnine
Requires:	python3-jupyter
Requires:	python3-nbval
Requires:	python3-sphinx
Requires:	python3-nbsphinx
Requires:	python3-jupytext
Requires:	python3-gapminder
Requires:	python3-pytest
Requires:	python3-hypothesis

%description
*scrappy data analysis, with seamless support for pandas and SQL*
[![CI](https://github.com/machow/siuba/workflows/CI/badge.svg)](https://github.com/machow/siuba/actions?query=workflow%3ACI+branch%3Amain)
[![Documentation Status](https://img.shields.io/badge/docs-siuba.org-blue.svg)](https://siuba.org)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/machow/siuba/master)
<img width="30%" align="right" src="./docs/siuba_small.svg">
siuba ([小巴](http://www.cantonese.sheik.co.uk/dictionary/words/9139/)) is a port of [dplyr](https://github.com/tidyverse/dplyr) and other R libraries. It supports a tabular data analysis workflow centered on 5 common actions:
* `select()` - keep certain columns of data.
* `filter()` - keep certain rows of data.
* `mutate()` - create or modify an existing column of data.
* `summarize()` - reduce one or more columns down to a single number.
* `arrange()` - reorder the rows of data.
These actions can be preceded by a `group_by()`, which causes them to be applied individually to grouped rows of data. Moreover, many SQL concepts, such as `distinct()`, `count()`, and joins are implemented.
Inputs to these functions can be a pandas `DataFrame` or SQL connection (currently postgres, redshift, or sqlite).
For more on the rationale behind tools like dplyr, see this [tidyverse paper](https://tidyverse.tidyverse.org/articles/paper.html). 
For examples of siuba in action, see the [siuba guide](https://siuba.org/guide).

%package -n python3-siuba
Summary:	A package for quick, scrappy analyses with pandas and SQL
Provides:	python-siuba
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-siuba
*scrappy data analysis, with seamless support for pandas and SQL*
[![CI](https://github.com/machow/siuba/workflows/CI/badge.svg)](https://github.com/machow/siuba/actions?query=workflow%3ACI+branch%3Amain)
[![Documentation Status](https://img.shields.io/badge/docs-siuba.org-blue.svg)](https://siuba.org)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/machow/siuba/master)
<img width="30%" align="right" src="./docs/siuba_small.svg">
siuba ([小巴](http://www.cantonese.sheik.co.uk/dictionary/words/9139/)) is a port of [dplyr](https://github.com/tidyverse/dplyr) and other R libraries. It supports a tabular data analysis workflow centered on 5 common actions:
* `select()` - keep certain columns of data.
* `filter()` - keep certain rows of data.
* `mutate()` - create or modify an existing column of data.
* `summarize()` - reduce one or more columns down to a single number.
* `arrange()` - reorder the rows of data.
These actions can be preceded by a `group_by()`, which causes them to be applied individually to grouped rows of data. Moreover, many SQL concepts, such as `distinct()`, `count()`, and joins are implemented.
Inputs to these functions can be a pandas `DataFrame` or SQL connection (currently postgres, redshift, or sqlite).
For more on the rationale behind tools like dplyr, see this [tidyverse paper](https://tidyverse.tidyverse.org/articles/paper.html). 
For examples of siuba in action, see the [siuba guide](https://siuba.org/guide).

%package help
Summary:	Development documents and examples for siuba
Provides:	python3-siuba-doc
%description help
*scrappy data analysis, with seamless support for pandas and SQL*
[![CI](https://github.com/machow/siuba/workflows/CI/badge.svg)](https://github.com/machow/siuba/actions?query=workflow%3ACI+branch%3Amain)
[![Documentation Status](https://img.shields.io/badge/docs-siuba.org-blue.svg)](https://siuba.org)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/machow/siuba/master)
<img width="30%" align="right" src="./docs/siuba_small.svg">
siuba ([小巴](http://www.cantonese.sheik.co.uk/dictionary/words/9139/)) is a port of [dplyr](https://github.com/tidyverse/dplyr) and other R libraries. It supports a tabular data analysis workflow centered on 5 common actions:
* `select()` - keep certain columns of data.
* `filter()` - keep certain rows of data.
* `mutate()` - create or modify an existing column of data.
* `summarize()` - reduce one or more columns down to a single number.
* `arrange()` - reorder the rows of data.
These actions can be preceded by a `group_by()`, which causes them to be applied individually to grouped rows of data. Moreover, many SQL concepts, such as `distinct()`, `count()`, and joins are implemented.
Inputs to these functions can be a pandas `DataFrame` or SQL connection (currently postgres, redshift, or sqlite).
For more on the rationale behind tools like dplyr, see this [tidyverse paper](https://tidyverse.tidyverse.org/articles/paper.html). 
For examples of siuba in action, see the [siuba guide](https://siuba.org/guide).

%prep
%autosetup -n siuba-0.4.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-siuba -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.2-1
- Package Spec generated