summaryrefslogtreecommitdiff
path: root/python-skl2onnx.spec
blob: 38e897784cbfcb07ff30f7b7a3077ddb90b3e0e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
%global _empty_manifest_terminate_build 0
Name:		python-skl2onnx
Version:	1.14.0
Release:	1
Summary:	Convert scikit-learn models to ONNX
License:	Apache License v2.0
URL:		https://github.com/onnx/sklearn-onnx
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e4/3b/5ef1025362a0408916e5a625a3d876f1b9004318c8cc4d6b9963f65e4822/skl2onnx-1.14.0.tar.gz
BuildArch:	noarch

Requires:	python3-onnx
Requires:	python3-scikit-learn
Requires:	python3-onnxconverter-common

%description
## Introduction
*sklearn-onnx* converts [scikit-learn](https://scikit-learn.org/stable/) models to [ONNX](https://github.com/onnx/onnx).
Once in the ONNX format, you can use tools like [ONNX Runtime](https://github.com/Microsoft/onnxruntime) for high performance scoring.
All converters are tested with [onnxruntime](https://onnxruntime.ai/).

## Documentation
Full documentation including tutorials is available at [https://onnx.ai/sklearn-onnx/](https://onnx.ai/sklearn-onnx/).
[Supported scikit-learn Models](https://onnx.ai/sklearn-onnx/supported.html)
Last supported opset is 15.

You may also find answers in [existing issues](https://github.com/onnx/sklearn-onnx/issues?utf8=%E2%9C%93&q=is%3Aissue)
or submit a new one.

## Installation
You can install from [PyPi](https://pypi.org/project/skl2onnx/):
```
pip install skl2onnx
```
Or you can install from the source with the latest changes.
```
pip install git+https://github.com/onnx/sklearn-onnx.git
```

## Contribute
We welcome contributions in the form of feedback, ideas, or code.

## License
[Apache License v2.0](LICENSE)


%package -n python3-skl2onnx
Summary:	Convert scikit-learn models to ONNX
Provides:	python-skl2onnx
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-skl2onnx
## Introduction
*sklearn-onnx* converts [scikit-learn](https://scikit-learn.org/stable/) models to [ONNX](https://github.com/onnx/onnx).
Once in the ONNX format, you can use tools like [ONNX Runtime](https://github.com/Microsoft/onnxruntime) for high performance scoring.
All converters are tested with [onnxruntime](https://onnxruntime.ai/).

## Documentation
Full documentation including tutorials is available at [https://onnx.ai/sklearn-onnx/](https://onnx.ai/sklearn-onnx/).
[Supported scikit-learn Models](https://onnx.ai/sklearn-onnx/supported.html)
Last supported opset is 15.

You may also find answers in [existing issues](https://github.com/onnx/sklearn-onnx/issues?utf8=%E2%9C%93&q=is%3Aissue)
or submit a new one.

## Installation
You can install from [PyPi](https://pypi.org/project/skl2onnx/):
```
pip install skl2onnx
```
Or you can install from the source with the latest changes.
```
pip install git+https://github.com/onnx/sklearn-onnx.git
```

## Contribute
We welcome contributions in the form of feedback, ideas, or code.

## License
[Apache License v2.0](LICENSE)


%package help
Summary:	Development documents and examples for skl2onnx
Provides:	python3-skl2onnx-doc
%description help
## Introduction
*sklearn-onnx* converts [scikit-learn](https://scikit-learn.org/stable/) models to [ONNX](https://github.com/onnx/onnx).
Once in the ONNX format, you can use tools like [ONNX Runtime](https://github.com/Microsoft/onnxruntime) for high performance scoring.
All converters are tested with [onnxruntime](https://onnxruntime.ai/).

## Documentation
Full documentation including tutorials is available at [https://onnx.ai/sklearn-onnx/](https://onnx.ai/sklearn-onnx/).
[Supported scikit-learn Models](https://onnx.ai/sklearn-onnx/supported.html)
Last supported opset is 15.

You may also find answers in [existing issues](https://github.com/onnx/sklearn-onnx/issues?utf8=%E2%9C%93&q=is%3Aissue)
or submit a new one.

## Installation
You can install from [PyPi](https://pypi.org/project/skl2onnx/):
```
pip install skl2onnx
```
Or you can install from the source with the latest changes.
```
pip install git+https://github.com/onnx/sklearn-onnx.git
```

## Contribute
We welcome contributions in the form of feedback, ideas, or code.

## License
[Apache License v2.0](LICENSE)


%prep
%autosetup -n skl2onnx-1.14.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-skl2onnx -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.14.0-1
- Package Spec generated