diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-12 03:43:50 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-12 03:43:50 +0000 |
commit | d74a76f2f467748348e641c74f503b50697dab85 (patch) | |
tree | 8cfe939fe905b48fdf1d12a4c51a91fdfff5c9ec | |
parent | b9e37a3b64ec85d20180bf8c79c409b9865225ea (diff) |
automatic import of python-sklearn-json
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-sklearn-json.spec | 280 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 282 insertions, 0 deletions
@@ -0,0 +1 @@ +/sklearn-json-0.1.0.tar.gz diff --git a/python-sklearn-json.spec b/python-sklearn-json.spec new file mode 100644 index 0000000..051abe4 --- /dev/null +++ b/python-sklearn-json.spec @@ -0,0 +1,280 @@ +%global _empty_manifest_terminate_build 0 +Name: python-sklearn-json +Version: 0.1.0 +Release: 1 +Summary: A safe, transparent way to share and deploy scikit-learn models. +License: MIT License +URL: https://github.com/mlrequest/sklearn-json +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/eb/2097ec853072efec5a52a3ebdaaf70f3fae5d6df3c4dc050556397734509/sklearn-json-0.1.0.tar.gz +BuildArch: noarch + +Requires: python3-scikit-learn + +%description +# sklearn-json +Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind. + +# Why sklearn-json? +Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/). + +sklearn-json is a safe and transparent solution for exporting scikit-learn model files. + +### Safe +Export model files to 100% JSON which cannot execute code on deserialization. + +### Transparent +Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside. + +# Getting Started + +sklearn-json makes exporting model files to JSON simple. + +## Install +``` +pip install sklearn-json +``` +## Example Usage + +```python +import sklearn_json as skljson +from sklearn.ensemble import RandomForestClassifier + +model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y) + +skljson.to_json(model, file_name) +deserialized_model = skljson.from_json(file_name) + +deserialized_model.predict(X) +``` + +# Features +The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com. + +sklearn-json requires scikit-learn >= 0.21.3. + +## Supported scikit-learn Models + +* Classification + * `sklearn.linear_model.LogisticRegression` + * `sklearn.linear_model.Perceptron` + * `sklearn.discriminant_analysis.LinearDiscriminantAnalysis` + * `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis` + * `sklearn.svm.SVC` + * `sklearn.naive_bayes.GaussianNB` + * `sklearn.naive_bayes.MultinomialNB` + * `sklearn.naive_bayes.ComplementNB` + * `sklearn.naive_bayes.BernoulliNB` + * `sklearn.tree.DecisionTreeClassifier` + * `sklearn.ensemble.RandomForestClassifier` + * `sklearn.ensemble.GradientBoostingClassifier` + * `sklearn.neural_network.MLPClassifier` + +* Regression + * `sklearn.linear_model.LinearRegression` + * `sklearn.linear_model.Ridge` + * `sklearn.linear_model.Lasso` + * `sklearn.svm.SVR` + * `sklearn.tree.DecisionTreeRegressor` + * `sklearn.ensemble.RandomForestRegressor` + * `sklearn.ensemble.GradientBoostingRegressor` + * `sklearn.neural_network.MLPRegressor` + + + + +%package -n python3-sklearn-json +Summary: A safe, transparent way to share and deploy scikit-learn models. +Provides: python-sklearn-json +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-sklearn-json +# sklearn-json +Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind. + +# Why sklearn-json? +Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/). + +sklearn-json is a safe and transparent solution for exporting scikit-learn model files. + +### Safe +Export model files to 100% JSON which cannot execute code on deserialization. + +### Transparent +Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside. + +# Getting Started + +sklearn-json makes exporting model files to JSON simple. + +## Install +``` +pip install sklearn-json +``` +## Example Usage + +```python +import sklearn_json as skljson +from sklearn.ensemble import RandomForestClassifier + +model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y) + +skljson.to_json(model, file_name) +deserialized_model = skljson.from_json(file_name) + +deserialized_model.predict(X) +``` + +# Features +The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com. + +sklearn-json requires scikit-learn >= 0.21.3. + +## Supported scikit-learn Models + +* Classification + * `sklearn.linear_model.LogisticRegression` + * `sklearn.linear_model.Perceptron` + * `sklearn.discriminant_analysis.LinearDiscriminantAnalysis` + * `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis` + * `sklearn.svm.SVC` + * `sklearn.naive_bayes.GaussianNB` + * `sklearn.naive_bayes.MultinomialNB` + * `sklearn.naive_bayes.ComplementNB` + * `sklearn.naive_bayes.BernoulliNB` + * `sklearn.tree.DecisionTreeClassifier` + * `sklearn.ensemble.RandomForestClassifier` + * `sklearn.ensemble.GradientBoostingClassifier` + * `sklearn.neural_network.MLPClassifier` + +* Regression + * `sklearn.linear_model.LinearRegression` + * `sklearn.linear_model.Ridge` + * `sklearn.linear_model.Lasso` + * `sklearn.svm.SVR` + * `sklearn.tree.DecisionTreeRegressor` + * `sklearn.ensemble.RandomForestRegressor` + * `sklearn.ensemble.GradientBoostingRegressor` + * `sklearn.neural_network.MLPRegressor` + + + + +%package help +Summary: Development documents and examples for sklearn-json +Provides: python3-sklearn-json-doc +%description help +# sklearn-json +Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind. + +# Why sklearn-json? +Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/). + +sklearn-json is a safe and transparent solution for exporting scikit-learn model files. + +### Safe +Export model files to 100% JSON which cannot execute code on deserialization. + +### Transparent +Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside. + +# Getting Started + +sklearn-json makes exporting model files to JSON simple. + +## Install +``` +pip install sklearn-json +``` +## Example Usage + +```python +import sklearn_json as skljson +from sklearn.ensemble import RandomForestClassifier + +model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y) + +skljson.to_json(model, file_name) +deserialized_model = skljson.from_json(file_name) + +deserialized_model.predict(X) +``` + +# Features +The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com. + +sklearn-json requires scikit-learn >= 0.21.3. + +## Supported scikit-learn Models + +* Classification + * `sklearn.linear_model.LogisticRegression` + * `sklearn.linear_model.Perceptron` + * `sklearn.discriminant_analysis.LinearDiscriminantAnalysis` + * `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis` + * `sklearn.svm.SVC` + * `sklearn.naive_bayes.GaussianNB` + * `sklearn.naive_bayes.MultinomialNB` + * `sklearn.naive_bayes.ComplementNB` + * `sklearn.naive_bayes.BernoulliNB` + * `sklearn.tree.DecisionTreeClassifier` + * `sklearn.ensemble.RandomForestClassifier` + * `sklearn.ensemble.GradientBoostingClassifier` + * `sklearn.neural_network.MLPClassifier` + +* Regression + * `sklearn.linear_model.LinearRegression` + * `sklearn.linear_model.Ridge` + * `sklearn.linear_model.Lasso` + * `sklearn.svm.SVR` + * `sklearn.tree.DecisionTreeRegressor` + * `sklearn.ensemble.RandomForestRegressor` + * `sklearn.ensemble.GradientBoostingRegressor` + * `sklearn.neural_network.MLPRegressor` + + + + +%prep +%autosetup -n sklearn-json-0.1.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-sklearn-json -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1 +- Package Spec generated @@ -0,0 +1 @@ +1fe1a380448c6be73edb50b5b4fd31f7 sklearn-json-0.1.0.tar.gz |