summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-12 03:43:50 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-12 03:43:50 +0000
commitd74a76f2f467748348e641c74f503b50697dab85 (patch)
tree8cfe939fe905b48fdf1d12a4c51a91fdfff5c9ec
parentb9e37a3b64ec85d20180bf8c79c409b9865225ea (diff)
automatic import of python-sklearn-json
-rw-r--r--.gitignore1
-rw-r--r--python-sklearn-json.spec280
-rw-r--r--sources1
3 files changed, 282 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..4a348c6 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/sklearn-json-0.1.0.tar.gz
diff --git a/python-sklearn-json.spec b/python-sklearn-json.spec
new file mode 100644
index 0000000..051abe4
--- /dev/null
+++ b/python-sklearn-json.spec
@@ -0,0 +1,280 @@
+%global _empty_manifest_terminate_build 0
+Name: python-sklearn-json
+Version: 0.1.0
+Release: 1
+Summary: A safe, transparent way to share and deploy scikit-learn models.
+License: MIT License
+URL: https://github.com/mlrequest/sklearn-json
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/eb/2097ec853072efec5a52a3ebdaaf70f3fae5d6df3c4dc050556397734509/sklearn-json-0.1.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-scikit-learn
+
+%description
+# sklearn-json
+Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.
+
+# Why sklearn-json?
+Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/).
+
+sklearn-json is a safe and transparent solution for exporting scikit-learn model files.
+
+### Safe
+Export model files to 100% JSON which cannot execute code on deserialization.
+
+### Transparent
+Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.
+
+# Getting Started
+
+sklearn-json makes exporting model files to JSON simple.
+
+## Install
+```
+pip install sklearn-json
+```
+## Example Usage
+
+```python
+import sklearn_json as skljson
+from sklearn.ensemble import RandomForestClassifier
+
+model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)
+
+skljson.to_json(model, file_name)
+deserialized_model = skljson.from_json(file_name)
+
+deserialized_model.predict(X)
+```
+
+# Features
+The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com.
+
+sklearn-json requires scikit-learn >= 0.21.3.
+
+## Supported scikit-learn Models
+
+* Classification
+ * `sklearn.linear_model.LogisticRegression`
+ * `sklearn.linear_model.Perceptron`
+ * `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`
+ * `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`
+ * `sklearn.svm.SVC`
+ * `sklearn.naive_bayes.GaussianNB`
+ * `sklearn.naive_bayes.MultinomialNB`
+ * `sklearn.naive_bayes.ComplementNB`
+ * `sklearn.naive_bayes.BernoulliNB`
+ * `sklearn.tree.DecisionTreeClassifier`
+ * `sklearn.ensemble.RandomForestClassifier`
+ * `sklearn.ensemble.GradientBoostingClassifier`
+ * `sklearn.neural_network.MLPClassifier`
+
+* Regression
+ * `sklearn.linear_model.LinearRegression`
+ * `sklearn.linear_model.Ridge`
+ * `sklearn.linear_model.Lasso`
+ * `sklearn.svm.SVR`
+ * `sklearn.tree.DecisionTreeRegressor`
+ * `sklearn.ensemble.RandomForestRegressor`
+ * `sklearn.ensemble.GradientBoostingRegressor`
+ * `sklearn.neural_network.MLPRegressor`
+
+
+
+
+%package -n python3-sklearn-json
+Summary: A safe, transparent way to share and deploy scikit-learn models.
+Provides: python-sklearn-json
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-sklearn-json
+# sklearn-json
+Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.
+
+# Why sklearn-json?
+Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/).
+
+sklearn-json is a safe and transparent solution for exporting scikit-learn model files.
+
+### Safe
+Export model files to 100% JSON which cannot execute code on deserialization.
+
+### Transparent
+Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.
+
+# Getting Started
+
+sklearn-json makes exporting model files to JSON simple.
+
+## Install
+```
+pip install sklearn-json
+```
+## Example Usage
+
+```python
+import sklearn_json as skljson
+from sklearn.ensemble import RandomForestClassifier
+
+model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)
+
+skljson.to_json(model, file_name)
+deserialized_model = skljson.from_json(file_name)
+
+deserialized_model.predict(X)
+```
+
+# Features
+The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com.
+
+sklearn-json requires scikit-learn >= 0.21.3.
+
+## Supported scikit-learn Models
+
+* Classification
+ * `sklearn.linear_model.LogisticRegression`
+ * `sklearn.linear_model.Perceptron`
+ * `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`
+ * `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`
+ * `sklearn.svm.SVC`
+ * `sklearn.naive_bayes.GaussianNB`
+ * `sklearn.naive_bayes.MultinomialNB`
+ * `sklearn.naive_bayes.ComplementNB`
+ * `sklearn.naive_bayes.BernoulliNB`
+ * `sklearn.tree.DecisionTreeClassifier`
+ * `sklearn.ensemble.RandomForestClassifier`
+ * `sklearn.ensemble.GradientBoostingClassifier`
+ * `sklearn.neural_network.MLPClassifier`
+
+* Regression
+ * `sklearn.linear_model.LinearRegression`
+ * `sklearn.linear_model.Ridge`
+ * `sklearn.linear_model.Lasso`
+ * `sklearn.svm.SVR`
+ * `sklearn.tree.DecisionTreeRegressor`
+ * `sklearn.ensemble.RandomForestRegressor`
+ * `sklearn.ensemble.GradientBoostingRegressor`
+ * `sklearn.neural_network.MLPRegressor`
+
+
+
+
+%package help
+Summary: Development documents and examples for sklearn-json
+Provides: python3-sklearn-json-doc
+%description help
+# sklearn-json
+Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.
+
+# Why sklearn-json?
+Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/).
+
+sklearn-json is a safe and transparent solution for exporting scikit-learn model files.
+
+### Safe
+Export model files to 100% JSON which cannot execute code on deserialization.
+
+### Transparent
+Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.
+
+# Getting Started
+
+sklearn-json makes exporting model files to JSON simple.
+
+## Install
+```
+pip install sklearn-json
+```
+## Example Usage
+
+```python
+import sklearn_json as skljson
+from sklearn.ensemble import RandomForestClassifier
+
+model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)
+
+skljson.to_json(model, file_name)
+deserialized_model = skljson.from_json(file_name)
+
+deserialized_model.predict(X)
+```
+
+# Features
+The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com.
+
+sklearn-json requires scikit-learn >= 0.21.3.
+
+## Supported scikit-learn Models
+
+* Classification
+ * `sklearn.linear_model.LogisticRegression`
+ * `sklearn.linear_model.Perceptron`
+ * `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`
+ * `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`
+ * `sklearn.svm.SVC`
+ * `sklearn.naive_bayes.GaussianNB`
+ * `sklearn.naive_bayes.MultinomialNB`
+ * `sklearn.naive_bayes.ComplementNB`
+ * `sklearn.naive_bayes.BernoulliNB`
+ * `sklearn.tree.DecisionTreeClassifier`
+ * `sklearn.ensemble.RandomForestClassifier`
+ * `sklearn.ensemble.GradientBoostingClassifier`
+ * `sklearn.neural_network.MLPClassifier`
+
+* Regression
+ * `sklearn.linear_model.LinearRegression`
+ * `sklearn.linear_model.Ridge`
+ * `sklearn.linear_model.Lasso`
+ * `sklearn.svm.SVR`
+ * `sklearn.tree.DecisionTreeRegressor`
+ * `sklearn.ensemble.RandomForestRegressor`
+ * `sklearn.ensemble.GradientBoostingRegressor`
+ * `sklearn.neural_network.MLPRegressor`
+
+
+
+
+%prep
+%autosetup -n sklearn-json-0.1.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-sklearn-json -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..7a2f91d
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+1fe1a380448c6be73edb50b5b4fd31f7 sklearn-json-0.1.0.tar.gz