1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
%global _empty_manifest_terminate_build 0
Name: python-sklearn-json
Version: 0.1.0
Release: 1
Summary: A safe, transparent way to share and deploy scikit-learn models.
License: MIT License
URL: https://github.com/mlrequest/sklearn-json
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/eb/2097ec853072efec5a52a3ebdaaf70f3fae5d6df3c4dc050556397734509/sklearn-json-0.1.0.tar.gz
BuildArch: noarch
Requires: python3-scikit-learn
%description
# sklearn-json
Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.
# Why sklearn-json?
Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/).
sklearn-json is a safe and transparent solution for exporting scikit-learn model files.
### Safe
Export model files to 100% JSON which cannot execute code on deserialization.
### Transparent
Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.
# Getting Started
sklearn-json makes exporting model files to JSON simple.
## Install
```
pip install sklearn-json
```
## Example Usage
```python
import sklearn_json as skljson
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)
skljson.to_json(model, file_name)
deserialized_model = skljson.from_json(file_name)
deserialized_model.predict(X)
```
# Features
The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com.
sklearn-json requires scikit-learn >= 0.21.3.
## Supported scikit-learn Models
* Classification
* `sklearn.linear_model.LogisticRegression`
* `sklearn.linear_model.Perceptron`
* `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`
* `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`
* `sklearn.svm.SVC`
* `sklearn.naive_bayes.GaussianNB`
* `sklearn.naive_bayes.MultinomialNB`
* `sklearn.naive_bayes.ComplementNB`
* `sklearn.naive_bayes.BernoulliNB`
* `sklearn.tree.DecisionTreeClassifier`
* `sklearn.ensemble.RandomForestClassifier`
* `sklearn.ensemble.GradientBoostingClassifier`
* `sklearn.neural_network.MLPClassifier`
* Regression
* `sklearn.linear_model.LinearRegression`
* `sklearn.linear_model.Ridge`
* `sklearn.linear_model.Lasso`
* `sklearn.svm.SVR`
* `sklearn.tree.DecisionTreeRegressor`
* `sklearn.ensemble.RandomForestRegressor`
* `sklearn.ensemble.GradientBoostingRegressor`
* `sklearn.neural_network.MLPRegressor`
%package -n python3-sklearn-json
Summary: A safe, transparent way to share and deploy scikit-learn models.
Provides: python-sklearn-json
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-sklearn-json
# sklearn-json
Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.
# Why sklearn-json?
Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/).
sklearn-json is a safe and transparent solution for exporting scikit-learn model files.
### Safe
Export model files to 100% JSON which cannot execute code on deserialization.
### Transparent
Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.
# Getting Started
sklearn-json makes exporting model files to JSON simple.
## Install
```
pip install sklearn-json
```
## Example Usage
```python
import sklearn_json as skljson
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)
skljson.to_json(model, file_name)
deserialized_model = skljson.from_json(file_name)
deserialized_model.predict(X)
```
# Features
The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com.
sklearn-json requires scikit-learn >= 0.21.3.
## Supported scikit-learn Models
* Classification
* `sklearn.linear_model.LogisticRegression`
* `sklearn.linear_model.Perceptron`
* `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`
* `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`
* `sklearn.svm.SVC`
* `sklearn.naive_bayes.GaussianNB`
* `sklearn.naive_bayes.MultinomialNB`
* `sklearn.naive_bayes.ComplementNB`
* `sklearn.naive_bayes.BernoulliNB`
* `sklearn.tree.DecisionTreeClassifier`
* `sklearn.ensemble.RandomForestClassifier`
* `sklearn.ensemble.GradientBoostingClassifier`
* `sklearn.neural_network.MLPClassifier`
* Regression
* `sklearn.linear_model.LinearRegression`
* `sklearn.linear_model.Ridge`
* `sklearn.linear_model.Lasso`
* `sklearn.svm.SVR`
* `sklearn.tree.DecisionTreeRegressor`
* `sklearn.ensemble.RandomForestRegressor`
* `sklearn.ensemble.GradientBoostingRegressor`
* `sklearn.neural_network.MLPRegressor`
%package help
Summary: Development documents and examples for sklearn-json
Provides: python3-sklearn-json-doc
%description help
# sklearn-json
Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.
# Why sklearn-json?
Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provide a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. (For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/).
sklearn-json is a safe and transparent solution for exporting scikit-learn model files.
### Safe
Export model files to 100% JSON which cannot execute code on deserialization.
### Transparent
Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.
# Getting Started
sklearn-json makes exporting model files to JSON simple.
## Install
```
pip install sklearn-json
```
## Example Usage
```python
import sklearn_json as skljson
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)
skljson.to_json(model, file_name)
deserialized_model = skljson.from_json(file_name)
deserialized_model.predict(X)
```
# Features
The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com.
sklearn-json requires scikit-learn >= 0.21.3.
## Supported scikit-learn Models
* Classification
* `sklearn.linear_model.LogisticRegression`
* `sklearn.linear_model.Perceptron`
* `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`
* `sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis`
* `sklearn.svm.SVC`
* `sklearn.naive_bayes.GaussianNB`
* `sklearn.naive_bayes.MultinomialNB`
* `sklearn.naive_bayes.ComplementNB`
* `sklearn.naive_bayes.BernoulliNB`
* `sklearn.tree.DecisionTreeClassifier`
* `sklearn.ensemble.RandomForestClassifier`
* `sklearn.ensemble.GradientBoostingClassifier`
* `sklearn.neural_network.MLPClassifier`
* Regression
* `sklearn.linear_model.LinearRegression`
* `sklearn.linear_model.Ridge`
* `sklearn.linear_model.Lasso`
* `sklearn.svm.SVR`
* `sklearn.tree.DecisionTreeRegressor`
* `sklearn.ensemble.RandomForestRegressor`
* `sklearn.ensemble.GradientBoostingRegressor`
* `sklearn.neural_network.MLPRegressor`
%prep
%autosetup -n sklearn-json-0.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-sklearn-json -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1
- Package Spec generated
|