summaryrefslogtreecommitdiff
path: root/python-sklearn-nature-inspired-algorithms.spec
blob: 2cf03bed65da8881ab03eb326d756a7d7c6d486e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
%global _empty_manifest_terminate_build 0
Name:		python-sklearn-nature-inspired-algorithms
Version:	0.11.0
Release:	1
Summary:	Search using nature inspired algorithms over specified parameter values for an sklearn estimator.
License:	MIT
URL:		https://github.com/timzatko/Sklearn-Nature-Inspired-Algorithms
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b8/a5/2f6b9c53291274b4247226728d230b482db2e31caee0ed201d32d7e9c20f/sklearn_nature_inspired_algorithms-0.11.0.tar.gz
BuildArch:	noarch

Requires:	python3-toml
Requires:	python3-scikit-learn
Requires:	python3-numpy
Requires:	python3-matplotlib
Requires:	python3-seaborn
Requires:	python3-pandas
Requires:	python3-niapy
Requires:	python3-scipy

%description
# Nature-Inspired Algorithms for scikit-learn

[![CI](https://github.com/timzatko/Sklearn-Nature-Inspired-Algorithms/workflows/CI/badge.svg?branch=master)](https://github.com/timzatko/Sklearn-Nature-Inspired-Algorithms/actions?query=workflow:CI+branch:master)
[![Maintainability](https://api.codeclimate.com/v1/badges/ed99e5c765bf5c95d716/maintainability)](https://codeclimate.com/github/timzatko/Sklearn-Nature-Inspired-Algorithms/maintainability)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/sklearn-nature-inspired-algorithms)
[![PyPI version](https://badge.fury.io/py/sklearn-nature-inspired-algorithms.svg)](https://pypi.org/project/sklearn-nature-inspired-algorithms/)
[![PyPI downloads](https://img.shields.io/pypi/dm/sklearn-nature-inspired-algorithms)](https://pypi.org/project/sklearn-nature-inspired-algorithms/)
[![Fedora package](https://img.shields.io/fedora/v/python3-sklearn-nature-inspired-algorithms?color=blue&label=Fedora%20Linux&logo=fedora)](https://src.fedoraproject.org/rpms/python-sklearn-nature-inspired-algorithms)

Nature-inspired algorithms for hyper-parameter tuning of [scikit-learn](https://github.com/scikit-learn/scikit-learn) models. This package uses algorithms implementation from [NiaPy](https://github.com/NiaOrg/NiaPy). 

## Installation

```shell script
$ pip install sklearn-nature-inspired-algorithms
```

To install this package on Fedora, run:

```sh
$ dnf install python3-sklearn-nature-inspired-algorithms
```

## Usage

The usage is similar to using sklearn's `GridSearchCV`. Refer to the [documentation](https://sklearn-nature-inspired-algorithms.readthedocs.io/en/stable/) for more detailed guides and more examples.

```python
from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV
from sklearn.ensemble import RandomForestClassifier

param_grid = { 
    'n_estimators': range(20, 100, 20), 
    'max_depth': range(2, 40, 2),
    'min_samples_split': range(2, 20, 2), 
    'max_features': ["auto", "sqrt", "log2"],
}

clf = RandomForestClassifier(random_state=42)

nia_search = NatureInspiredSearchCV(
    clf,
    param_grid,
    algorithm='hba', # hybrid bat algorithm
    population_size=50,
    max_n_gen=100,
    max_stagnating_gen=10,
    runs=3,
    random_state=None, # or any number if you want same results on each run
)

nia_search.fit(X_train, y_train)

# the best params are stored in nia_search.best_params_
# finally you can train your model with best params from nia search
new_clf = RandomForestClassifier(**nia_search.best_params_, random_state=42)
```

Also you plot the search process with _line plot_ or _violin plot_.

```python
from sklearn_nature_inspired_algorithms.helpers import score_by_generation_lineplot, score_by_generation_violinplot

# line plot will plot all of the runs, you can specify the metric to be plotted ('min', 'max', 'median', 'mean')
score_by_generation_lineplot(nia_search, metric='max')

# in violin plot you need to specify the run to be plotted
score_by_generation_violinplot(nia_search, run=0)
```

Jupyter notebooks with full examples are available in [here](examples/notebooks).

### Using a Custom Nature-Inspired Algorithm

If you do not want to use any of the pre-defined algorithm configurations, you can use any algorithm from the  [NiaPy](https://github.com/NiaOrg/NiaPy) collection.
This will allow you to have more control of the algorithm behavior. 
Refer to their [documentation](https://niapy.readthedocs.io/en/latest/) and [examples](https://github.com/NiaOrg/NiaPy/tree/master/examples) for the usage. 

__Note:__ Use version >2.x.x of NiaPy package

```python
from niapy.algorithms.basic import GeneticAlgorithm

algorithm = GeneticAlgorithm() # when custom algorithm is provided random_state is ignored
algorithm.set_parameters(NP=50, Ts=5, Mr=0.25)

nia_search = NatureInspiredSearchCV(
    clf,
    param_grid,
    algorithm=algorithm,
    population_size=50,
    max_n_gen=100,
    max_stagnating_gen=20,
    runs=3,
)

nia_search.fit(X_train, y_train)
```

## Contributing 

Detailed information on the contribution guidelines are in the [CONTRIBUTING.md](./CONTRIBUTING.md).


%package -n python3-sklearn-nature-inspired-algorithms
Summary:	Search using nature inspired algorithms over specified parameter values for an sklearn estimator.
Provides:	python-sklearn-nature-inspired-algorithms
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-sklearn-nature-inspired-algorithms
# Nature-Inspired Algorithms for scikit-learn

[![CI](https://github.com/timzatko/Sklearn-Nature-Inspired-Algorithms/workflows/CI/badge.svg?branch=master)](https://github.com/timzatko/Sklearn-Nature-Inspired-Algorithms/actions?query=workflow:CI+branch:master)
[![Maintainability](https://api.codeclimate.com/v1/badges/ed99e5c765bf5c95d716/maintainability)](https://codeclimate.com/github/timzatko/Sklearn-Nature-Inspired-Algorithms/maintainability)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/sklearn-nature-inspired-algorithms)
[![PyPI version](https://badge.fury.io/py/sklearn-nature-inspired-algorithms.svg)](https://pypi.org/project/sklearn-nature-inspired-algorithms/)
[![PyPI downloads](https://img.shields.io/pypi/dm/sklearn-nature-inspired-algorithms)](https://pypi.org/project/sklearn-nature-inspired-algorithms/)
[![Fedora package](https://img.shields.io/fedora/v/python3-sklearn-nature-inspired-algorithms?color=blue&label=Fedora%20Linux&logo=fedora)](https://src.fedoraproject.org/rpms/python-sklearn-nature-inspired-algorithms)

Nature-inspired algorithms for hyper-parameter tuning of [scikit-learn](https://github.com/scikit-learn/scikit-learn) models. This package uses algorithms implementation from [NiaPy](https://github.com/NiaOrg/NiaPy). 

## Installation

```shell script
$ pip install sklearn-nature-inspired-algorithms
```

To install this package on Fedora, run:

```sh
$ dnf install python3-sklearn-nature-inspired-algorithms
```

## Usage

The usage is similar to using sklearn's `GridSearchCV`. Refer to the [documentation](https://sklearn-nature-inspired-algorithms.readthedocs.io/en/stable/) for more detailed guides and more examples.

```python
from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV
from sklearn.ensemble import RandomForestClassifier

param_grid = { 
    'n_estimators': range(20, 100, 20), 
    'max_depth': range(2, 40, 2),
    'min_samples_split': range(2, 20, 2), 
    'max_features': ["auto", "sqrt", "log2"],
}

clf = RandomForestClassifier(random_state=42)

nia_search = NatureInspiredSearchCV(
    clf,
    param_grid,
    algorithm='hba', # hybrid bat algorithm
    population_size=50,
    max_n_gen=100,
    max_stagnating_gen=10,
    runs=3,
    random_state=None, # or any number if you want same results on each run
)

nia_search.fit(X_train, y_train)

# the best params are stored in nia_search.best_params_
# finally you can train your model with best params from nia search
new_clf = RandomForestClassifier(**nia_search.best_params_, random_state=42)
```

Also you plot the search process with _line plot_ or _violin plot_.

```python
from sklearn_nature_inspired_algorithms.helpers import score_by_generation_lineplot, score_by_generation_violinplot

# line plot will plot all of the runs, you can specify the metric to be plotted ('min', 'max', 'median', 'mean')
score_by_generation_lineplot(nia_search, metric='max')

# in violin plot you need to specify the run to be plotted
score_by_generation_violinplot(nia_search, run=0)
```

Jupyter notebooks with full examples are available in [here](examples/notebooks).

### Using a Custom Nature-Inspired Algorithm

If you do not want to use any of the pre-defined algorithm configurations, you can use any algorithm from the  [NiaPy](https://github.com/NiaOrg/NiaPy) collection.
This will allow you to have more control of the algorithm behavior. 
Refer to their [documentation](https://niapy.readthedocs.io/en/latest/) and [examples](https://github.com/NiaOrg/NiaPy/tree/master/examples) for the usage. 

__Note:__ Use version >2.x.x of NiaPy package

```python
from niapy.algorithms.basic import GeneticAlgorithm

algorithm = GeneticAlgorithm() # when custom algorithm is provided random_state is ignored
algorithm.set_parameters(NP=50, Ts=5, Mr=0.25)

nia_search = NatureInspiredSearchCV(
    clf,
    param_grid,
    algorithm=algorithm,
    population_size=50,
    max_n_gen=100,
    max_stagnating_gen=20,
    runs=3,
)

nia_search.fit(X_train, y_train)
```

## Contributing 

Detailed information on the contribution guidelines are in the [CONTRIBUTING.md](./CONTRIBUTING.md).


%package help
Summary:	Development documents and examples for sklearn-nature-inspired-algorithms
Provides:	python3-sklearn-nature-inspired-algorithms-doc
%description help
# Nature-Inspired Algorithms for scikit-learn

[![CI](https://github.com/timzatko/Sklearn-Nature-Inspired-Algorithms/workflows/CI/badge.svg?branch=master)](https://github.com/timzatko/Sklearn-Nature-Inspired-Algorithms/actions?query=workflow:CI+branch:master)
[![Maintainability](https://api.codeclimate.com/v1/badges/ed99e5c765bf5c95d716/maintainability)](https://codeclimate.com/github/timzatko/Sklearn-Nature-Inspired-Algorithms/maintainability)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/sklearn-nature-inspired-algorithms)
[![PyPI version](https://badge.fury.io/py/sklearn-nature-inspired-algorithms.svg)](https://pypi.org/project/sklearn-nature-inspired-algorithms/)
[![PyPI downloads](https://img.shields.io/pypi/dm/sklearn-nature-inspired-algorithms)](https://pypi.org/project/sklearn-nature-inspired-algorithms/)
[![Fedora package](https://img.shields.io/fedora/v/python3-sklearn-nature-inspired-algorithms?color=blue&label=Fedora%20Linux&logo=fedora)](https://src.fedoraproject.org/rpms/python-sklearn-nature-inspired-algorithms)

Nature-inspired algorithms for hyper-parameter tuning of [scikit-learn](https://github.com/scikit-learn/scikit-learn) models. This package uses algorithms implementation from [NiaPy](https://github.com/NiaOrg/NiaPy). 

## Installation

```shell script
$ pip install sklearn-nature-inspired-algorithms
```

To install this package on Fedora, run:

```sh
$ dnf install python3-sklearn-nature-inspired-algorithms
```

## Usage

The usage is similar to using sklearn's `GridSearchCV`. Refer to the [documentation](https://sklearn-nature-inspired-algorithms.readthedocs.io/en/stable/) for more detailed guides and more examples.

```python
from sklearn_nature_inspired_algorithms.model_selection import NatureInspiredSearchCV
from sklearn.ensemble import RandomForestClassifier

param_grid = { 
    'n_estimators': range(20, 100, 20), 
    'max_depth': range(2, 40, 2),
    'min_samples_split': range(2, 20, 2), 
    'max_features': ["auto", "sqrt", "log2"],
}

clf = RandomForestClassifier(random_state=42)

nia_search = NatureInspiredSearchCV(
    clf,
    param_grid,
    algorithm='hba', # hybrid bat algorithm
    population_size=50,
    max_n_gen=100,
    max_stagnating_gen=10,
    runs=3,
    random_state=None, # or any number if you want same results on each run
)

nia_search.fit(X_train, y_train)

# the best params are stored in nia_search.best_params_
# finally you can train your model with best params from nia search
new_clf = RandomForestClassifier(**nia_search.best_params_, random_state=42)
```

Also you plot the search process with _line plot_ or _violin plot_.

```python
from sklearn_nature_inspired_algorithms.helpers import score_by_generation_lineplot, score_by_generation_violinplot

# line plot will plot all of the runs, you can specify the metric to be plotted ('min', 'max', 'median', 'mean')
score_by_generation_lineplot(nia_search, metric='max')

# in violin plot you need to specify the run to be plotted
score_by_generation_violinplot(nia_search, run=0)
```

Jupyter notebooks with full examples are available in [here](examples/notebooks).

### Using a Custom Nature-Inspired Algorithm

If you do not want to use any of the pre-defined algorithm configurations, you can use any algorithm from the  [NiaPy](https://github.com/NiaOrg/NiaPy) collection.
This will allow you to have more control of the algorithm behavior. 
Refer to their [documentation](https://niapy.readthedocs.io/en/latest/) and [examples](https://github.com/NiaOrg/NiaPy/tree/master/examples) for the usage. 

__Note:__ Use version >2.x.x of NiaPy package

```python
from niapy.algorithms.basic import GeneticAlgorithm

algorithm = GeneticAlgorithm() # when custom algorithm is provided random_state is ignored
algorithm.set_parameters(NP=50, Ts=5, Mr=0.25)

nia_search = NatureInspiredSearchCV(
    clf,
    param_grid,
    algorithm=algorithm,
    population_size=50,
    max_n_gen=100,
    max_stagnating_gen=20,
    runs=3,
)

nia_search.fit(X_train, y_train)
```

## Contributing 

Detailed information on the contribution guidelines are in the [CONTRIBUTING.md](./CONTRIBUTING.md).


%prep
%autosetup -n sklearn-nature-inspired-algorithms-0.11.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-sklearn-nature-inspired-algorithms -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.11.0-1
- Package Spec generated