diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-15 07:24:53 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-15 07:24:53 +0000 |
| commit | 0910cdea6aadee1d23c2cbca9bdc268a0361f931 (patch) | |
| tree | b196559b571a92b5b98783c9c8bfd717e45dbff2 /python-spark-etl.spec | |
| parent | db986cb23cb9a2132b43dacdba7b8f5f952240b0 (diff) | |
automatic import of python-spark-etl
Diffstat (limited to 'python-spark-etl.spec')
| -rw-r--r-- | python-spark-etl.spec | 516 |
1 files changed, 516 insertions, 0 deletions
diff --git a/python-spark-etl.spec b/python-spark-etl.spec new file mode 100644 index 0000000..72b3bcf --- /dev/null +++ b/python-spark-etl.spec @@ -0,0 +1,516 @@ +%global _empty_manifest_terminate_build 0 +Name: python-spark-etl +Version: 0.0.122 +Release: 1 +Summary: Generic ETL Pipeline Framework for Apache Spark +License: MIT +URL: https://github.com/stonezhong/spark_etl +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9e/b4/940f4b3aea2b51b6358bfa552ea03c04001978cbd16694f666a129e5f97a/spark-etl-0.0.122.tar.gz +BuildArch: noarch + +Requires: python3-requests +Requires: python3-Jinja2 +Requires: python3-termcolor + +%description +* [Overview](#overview) + * [Goal](#goal) + * [Benefit](#benefit) + * [Application](#application) + * [Build your application](#build_your_application) + * [Deploy your application](#deploy_your_application) + * [Run your application](#run_your_application) + * [Supported platforms](#supported_platforms) +* [Demos](#demos) +* [APIs](#apis) + * [Job Deployer](#job-deployer) + * [Job Submitter](#job-submitter) + +# Overview + +## Goal +There are many public clouds provide managed Apache Spark as service, such as databricks, AWS EMR, Oracle OCI DataFlow, see the table below for a detailed list. + +However, the way to deploy Spark application and launch Spark application are incompatible among different cloud Spark platforms. + +spark-etl is a python package, provides a standard way for building, deploying and running your Spark application that supports various cloud spark platforms. + +## Benefit +Your application using `spark-etl` can be deployed and launched from different cloud spark platforms without changing the source code. + +## Application +An application is a python program. It contains: +* A `main.py` file which contains the application entry +* A `manifest.json` file, which specify the metadata of the application. +* A `requirements.txt` file, which specify the application dependency. + +### Application entry signature +In your application's `main.py`, you shuold have a `main` function with the following signature: +* `spark` is the spark session object +* `input_args` a dict, is the argument user specified when running this application. +* `sysops` is the system options passed, it is platform specific. Job submitter may inject platform specific object in `sysops` object. +* Your `main` function's return value should be a JSON object, it will be returned from the job submitter to the caller. +``` +def main(spark, input_args, sysops={}): + # your code here +``` +[Here](examples/apps/demo01) is an application example. + + +## Build your application +`etl -a build -c <config-filename> -p <application-name>` +## Deploy your application +`etl -a deploy -c <config-filename> -p <application-name> -f <profile-name>` +## Run your application +`etl -a run -c <config-filename> -p <application-name> -f <profile-name> --run-args <input-filename>` +## Supported platforms +<table> + <tr> + <td> + <img + src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Apache_Spark_logo.svg/1200px-Apache_Spark_logo.svg.png" + width="120px" + /> + </td> + <td>You setup your own Apache Spark Cluster. + </td> + </tr> + <tr> + <td> + <img src="https://miro.medium.com/max/700/1*qgkjkj6BLVS1uD4mw_sTEg.png" width="120px" /> + </td> + <td> + Use <a href="https://pypi.org/project/pyspark/">PySpark</a> package, fully compatible to other spark platform, allows you to test your pipeline in a single computer. + </td> + </tr> + <tr> + <td> + <img src="https://databricks.com/wp-content/uploads/2019/02/databricks-generic-tile.png" width="120px"> + </td> + <td>You host your spark cluster in <a href="https://databricks.com/">databricks </a></td> + </tr> + <tr> + <td> + <img + src="https://blog.ippon.tech/content/images/2019/06/emrlogogo.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://aws.amazon.com/emr/">Amazon AWS EMR</a> + </td> + </tr> + <tr> + <td> + <img + src="https://d15shllkswkct0.cloudfront.net/wp-content/blogs.dir/1/files/2020/07/100-768x402.jpeg" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://cloud.google.com/dataproc">Google Cloud</a></td> + </tr> + <tr> + <td> + <img + src="https://apifriends.com/wp-content/uploads/2018/05/HDInsightsDetails.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://azure.microsoft.com/en-us/services/hdinsight/">Microsoft Azure HDInsight</a></td> + </tr> + <tr> + <td> + <img + src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRajQVuckGogS3c8Yxa4M-OPd7yFCyWSj4Cpg&usqp=CAU" + width="120px" + /> + </td> + <td> + You host your spark cluster in <a href="https://www.oracle.com/big-data/data-flow/">Oracle Cloud Infrastructure, Data Flow Service</a> + </td> + </tr> + <tr> + <td> + <img + src="https://upload.wikimedia.org/wikipedia/commons/2/24/IBM_Cloud_logo.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://www.ibm.com/products/big-data-and-analytics">IBM Cloud</a></td> + </tr> +</table> + +# Demos +* [Using local pyspark, access data on local disk](examples/pyspark_local/readme.md) +* [Using local pyspark, access data on AWS S3](examples/pyspark_s3/readme.md) +* [Using on-premise spark, access data on HDFS](examples/livy_hdfs1/readme.md) +* [Using on-premise spark, access data on AWS S3](examples/livy_hdfs2/readme.md) +* [Using AWS EMR's spark, access data on AWS S3](examples/aws_emr/readme.md) +* [Using Oracle OCI's Dataflow with API key, access data on Object Storage](examples/oci_dataflow1/readme.md) +* [Using Oracle OCI's Dataflow with instance principal, access data on Object Storage](examples/oci_dataflow2/readme.md) + +# APIs +[pydocs for APIs](https://stonezhong.github.io/spark_etl/pydocs/spark_etl.html) + + +## Job Deployer +For job deployers, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-deployer-classes) . + + +## Job Submitter +For job submitters, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-submitter-classes) + + + + +%package -n python3-spark-etl +Summary: Generic ETL Pipeline Framework for Apache Spark +Provides: python-spark-etl +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-spark-etl +* [Overview](#overview) + * [Goal](#goal) + * [Benefit](#benefit) + * [Application](#application) + * [Build your application](#build_your_application) + * [Deploy your application](#deploy_your_application) + * [Run your application](#run_your_application) + * [Supported platforms](#supported_platforms) +* [Demos](#demos) +* [APIs](#apis) + * [Job Deployer](#job-deployer) + * [Job Submitter](#job-submitter) + +# Overview + +## Goal +There are many public clouds provide managed Apache Spark as service, such as databricks, AWS EMR, Oracle OCI DataFlow, see the table below for a detailed list. + +However, the way to deploy Spark application and launch Spark application are incompatible among different cloud Spark platforms. + +spark-etl is a python package, provides a standard way for building, deploying and running your Spark application that supports various cloud spark platforms. + +## Benefit +Your application using `spark-etl` can be deployed and launched from different cloud spark platforms without changing the source code. + +## Application +An application is a python program. It contains: +* A `main.py` file which contains the application entry +* A `manifest.json` file, which specify the metadata of the application. +* A `requirements.txt` file, which specify the application dependency. + +### Application entry signature +In your application's `main.py`, you shuold have a `main` function with the following signature: +* `spark` is the spark session object +* `input_args` a dict, is the argument user specified when running this application. +* `sysops` is the system options passed, it is platform specific. Job submitter may inject platform specific object in `sysops` object. +* Your `main` function's return value should be a JSON object, it will be returned from the job submitter to the caller. +``` +def main(spark, input_args, sysops={}): + # your code here +``` +[Here](examples/apps/demo01) is an application example. + + +## Build your application +`etl -a build -c <config-filename> -p <application-name>` +## Deploy your application +`etl -a deploy -c <config-filename> -p <application-name> -f <profile-name>` +## Run your application +`etl -a run -c <config-filename> -p <application-name> -f <profile-name> --run-args <input-filename>` +## Supported platforms +<table> + <tr> + <td> + <img + src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Apache_Spark_logo.svg/1200px-Apache_Spark_logo.svg.png" + width="120px" + /> + </td> + <td>You setup your own Apache Spark Cluster. + </td> + </tr> + <tr> + <td> + <img src="https://miro.medium.com/max/700/1*qgkjkj6BLVS1uD4mw_sTEg.png" width="120px" /> + </td> + <td> + Use <a href="https://pypi.org/project/pyspark/">PySpark</a> package, fully compatible to other spark platform, allows you to test your pipeline in a single computer. + </td> + </tr> + <tr> + <td> + <img src="https://databricks.com/wp-content/uploads/2019/02/databricks-generic-tile.png" width="120px"> + </td> + <td>You host your spark cluster in <a href="https://databricks.com/">databricks </a></td> + </tr> + <tr> + <td> + <img + src="https://blog.ippon.tech/content/images/2019/06/emrlogogo.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://aws.amazon.com/emr/">Amazon AWS EMR</a> + </td> + </tr> + <tr> + <td> + <img + src="https://d15shllkswkct0.cloudfront.net/wp-content/blogs.dir/1/files/2020/07/100-768x402.jpeg" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://cloud.google.com/dataproc">Google Cloud</a></td> + </tr> + <tr> + <td> + <img + src="https://apifriends.com/wp-content/uploads/2018/05/HDInsightsDetails.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://azure.microsoft.com/en-us/services/hdinsight/">Microsoft Azure HDInsight</a></td> + </tr> + <tr> + <td> + <img + src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRajQVuckGogS3c8Yxa4M-OPd7yFCyWSj4Cpg&usqp=CAU" + width="120px" + /> + </td> + <td> + You host your spark cluster in <a href="https://www.oracle.com/big-data/data-flow/">Oracle Cloud Infrastructure, Data Flow Service</a> + </td> + </tr> + <tr> + <td> + <img + src="https://upload.wikimedia.org/wikipedia/commons/2/24/IBM_Cloud_logo.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://www.ibm.com/products/big-data-and-analytics">IBM Cloud</a></td> + </tr> +</table> + +# Demos +* [Using local pyspark, access data on local disk](examples/pyspark_local/readme.md) +* [Using local pyspark, access data on AWS S3](examples/pyspark_s3/readme.md) +* [Using on-premise spark, access data on HDFS](examples/livy_hdfs1/readme.md) +* [Using on-premise spark, access data on AWS S3](examples/livy_hdfs2/readme.md) +* [Using AWS EMR's spark, access data on AWS S3](examples/aws_emr/readme.md) +* [Using Oracle OCI's Dataflow with API key, access data on Object Storage](examples/oci_dataflow1/readme.md) +* [Using Oracle OCI's Dataflow with instance principal, access data on Object Storage](examples/oci_dataflow2/readme.md) + +# APIs +[pydocs for APIs](https://stonezhong.github.io/spark_etl/pydocs/spark_etl.html) + + +## Job Deployer +For job deployers, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-deployer-classes) . + + +## Job Submitter +For job submitters, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-submitter-classes) + + + + +%package help +Summary: Development documents and examples for spark-etl +Provides: python3-spark-etl-doc +%description help +* [Overview](#overview) + * [Goal](#goal) + * [Benefit](#benefit) + * [Application](#application) + * [Build your application](#build_your_application) + * [Deploy your application](#deploy_your_application) + * [Run your application](#run_your_application) + * [Supported platforms](#supported_platforms) +* [Demos](#demos) +* [APIs](#apis) + * [Job Deployer](#job-deployer) + * [Job Submitter](#job-submitter) + +# Overview + +## Goal +There are many public clouds provide managed Apache Spark as service, such as databricks, AWS EMR, Oracle OCI DataFlow, see the table below for a detailed list. + +However, the way to deploy Spark application and launch Spark application are incompatible among different cloud Spark platforms. + +spark-etl is a python package, provides a standard way for building, deploying and running your Spark application that supports various cloud spark platforms. + +## Benefit +Your application using `spark-etl` can be deployed and launched from different cloud spark platforms without changing the source code. + +## Application +An application is a python program. It contains: +* A `main.py` file which contains the application entry +* A `manifest.json` file, which specify the metadata of the application. +* A `requirements.txt` file, which specify the application dependency. + +### Application entry signature +In your application's `main.py`, you shuold have a `main` function with the following signature: +* `spark` is the spark session object +* `input_args` a dict, is the argument user specified when running this application. +* `sysops` is the system options passed, it is platform specific. Job submitter may inject platform specific object in `sysops` object. +* Your `main` function's return value should be a JSON object, it will be returned from the job submitter to the caller. +``` +def main(spark, input_args, sysops={}): + # your code here +``` +[Here](examples/apps/demo01) is an application example. + + +## Build your application +`etl -a build -c <config-filename> -p <application-name>` +## Deploy your application +`etl -a deploy -c <config-filename> -p <application-name> -f <profile-name>` +## Run your application +`etl -a run -c <config-filename> -p <application-name> -f <profile-name> --run-args <input-filename>` +## Supported platforms +<table> + <tr> + <td> + <img + src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Apache_Spark_logo.svg/1200px-Apache_Spark_logo.svg.png" + width="120px" + /> + </td> + <td>You setup your own Apache Spark Cluster. + </td> + </tr> + <tr> + <td> + <img src="https://miro.medium.com/max/700/1*qgkjkj6BLVS1uD4mw_sTEg.png" width="120px" /> + </td> + <td> + Use <a href="https://pypi.org/project/pyspark/">PySpark</a> package, fully compatible to other spark platform, allows you to test your pipeline in a single computer. + </td> + </tr> + <tr> + <td> + <img src="https://databricks.com/wp-content/uploads/2019/02/databricks-generic-tile.png" width="120px"> + </td> + <td>You host your spark cluster in <a href="https://databricks.com/">databricks </a></td> + </tr> + <tr> + <td> + <img + src="https://blog.ippon.tech/content/images/2019/06/emrlogogo.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://aws.amazon.com/emr/">Amazon AWS EMR</a> + </td> + </tr> + <tr> + <td> + <img + src="https://d15shllkswkct0.cloudfront.net/wp-content/blogs.dir/1/files/2020/07/100-768x402.jpeg" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://cloud.google.com/dataproc">Google Cloud</a></td> + </tr> + <tr> + <td> + <img + src="https://apifriends.com/wp-content/uploads/2018/05/HDInsightsDetails.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://azure.microsoft.com/en-us/services/hdinsight/">Microsoft Azure HDInsight</a></td> + </tr> + <tr> + <td> + <img + src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRajQVuckGogS3c8Yxa4M-OPd7yFCyWSj4Cpg&usqp=CAU" + width="120px" + /> + </td> + <td> + You host your spark cluster in <a href="https://www.oracle.com/big-data/data-flow/">Oracle Cloud Infrastructure, Data Flow Service</a> + </td> + </tr> + <tr> + <td> + <img + src="https://upload.wikimedia.org/wikipedia/commons/2/24/IBM_Cloud_logo.png" + width="120px" + /> + </td> + <td>You host your spark cluster in <a href="https://www.ibm.com/products/big-data-and-analytics">IBM Cloud</a></td> + </tr> +</table> + +# Demos +* [Using local pyspark, access data on local disk](examples/pyspark_local/readme.md) +* [Using local pyspark, access data on AWS S3](examples/pyspark_s3/readme.md) +* [Using on-premise spark, access data on HDFS](examples/livy_hdfs1/readme.md) +* [Using on-premise spark, access data on AWS S3](examples/livy_hdfs2/readme.md) +* [Using AWS EMR's spark, access data on AWS S3](examples/aws_emr/readme.md) +* [Using Oracle OCI's Dataflow with API key, access data on Object Storage](examples/oci_dataflow1/readme.md) +* [Using Oracle OCI's Dataflow with instance principal, access data on Object Storage](examples/oci_dataflow2/readme.md) + +# APIs +[pydocs for APIs](https://stonezhong.github.io/spark_etl/pydocs/spark_etl.html) + + +## Job Deployer +For job deployers, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-deployer-classes) . + + +## Job Submitter +For job submitters, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-submitter-classes) + + + + +%prep +%autosetup -n spark-etl-0.0.122 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-spark-etl -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.122-1 +- Package Spec generated |
