1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
%global _empty_manifest_terminate_build 0
Name: python-spark-etl
Version: 0.0.122
Release: 1
Summary: Generic ETL Pipeline Framework for Apache Spark
License: MIT
URL: https://github.com/stonezhong/spark_etl
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9e/b4/940f4b3aea2b51b6358bfa552ea03c04001978cbd16694f666a129e5f97a/spark-etl-0.0.122.tar.gz
BuildArch: noarch
Requires: python3-requests
Requires: python3-Jinja2
Requires: python3-termcolor
%description
* [Overview](#overview)
* [Goal](#goal)
* [Benefit](#benefit)
* [Application](#application)
* [Build your application](#build_your_application)
* [Deploy your application](#deploy_your_application)
* [Run your application](#run_your_application)
* [Supported platforms](#supported_platforms)
* [Demos](#demos)
* [APIs](#apis)
* [Job Deployer](#job-deployer)
* [Job Submitter](#job-submitter)
# Overview
## Goal
There are many public clouds provide managed Apache Spark as service, such as databricks, AWS EMR, Oracle OCI DataFlow, see the table below for a detailed list.
However, the way to deploy Spark application and launch Spark application are incompatible among different cloud Spark platforms.
spark-etl is a python package, provides a standard way for building, deploying and running your Spark application that supports various cloud spark platforms.
## Benefit
Your application using `spark-etl` can be deployed and launched from different cloud spark platforms without changing the source code.
## Application
An application is a python program. It contains:
* A `main.py` file which contains the application entry
* A `manifest.json` file, which specify the metadata of the application.
* A `requirements.txt` file, which specify the application dependency.
### Application entry signature
In your application's `main.py`, you shuold have a `main` function with the following signature:
* `spark` is the spark session object
* `input_args` a dict, is the argument user specified when running this application.
* `sysops` is the system options passed, it is platform specific. Job submitter may inject platform specific object in `sysops` object.
* Your `main` function's return value should be a JSON object, it will be returned from the job submitter to the caller.
```
def main(spark, input_args, sysops={}):
# your code here
```
[Here](examples/apps/demo01) is an application example.
## Build your application
`etl -a build -c <config-filename> -p <application-name>`
## Deploy your application
`etl -a deploy -c <config-filename> -p <application-name> -f <profile-name>`
## Run your application
`etl -a run -c <config-filename> -p <application-name> -f <profile-name> --run-args <input-filename>`
## Supported platforms
<table>
<tr>
<td>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Apache_Spark_logo.svg/1200px-Apache_Spark_logo.svg.png"
width="120px"
/>
</td>
<td>You setup your own Apache Spark Cluster.
</td>
</tr>
<tr>
<td>
<img src="https://miro.medium.com/max/700/1*qgkjkj6BLVS1uD4mw_sTEg.png" width="120px" />
</td>
<td>
Use <a href="https://pypi.org/project/pyspark/">PySpark</a> package, fully compatible to other spark platform, allows you to test your pipeline in a single computer.
</td>
</tr>
<tr>
<td>
<img src="https://databricks.com/wp-content/uploads/2019/02/databricks-generic-tile.png" width="120px">
</td>
<td>You host your spark cluster in <a href="https://databricks.com/">databricks </a></td>
</tr>
<tr>
<td>
<img
src="https://blog.ippon.tech/content/images/2019/06/emrlogogo.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://aws.amazon.com/emr/">Amazon AWS EMR</a>
</td>
</tr>
<tr>
<td>
<img
src="https://d15shllkswkct0.cloudfront.net/wp-content/blogs.dir/1/files/2020/07/100-768x402.jpeg"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://cloud.google.com/dataproc">Google Cloud</a></td>
</tr>
<tr>
<td>
<img
src="https://apifriends.com/wp-content/uploads/2018/05/HDInsightsDetails.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://azure.microsoft.com/en-us/services/hdinsight/">Microsoft Azure HDInsight</a></td>
</tr>
<tr>
<td>
<img
src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRajQVuckGogS3c8Yxa4M-OPd7yFCyWSj4Cpg&usqp=CAU"
width="120px"
/>
</td>
<td>
You host your spark cluster in <a href="https://www.oracle.com/big-data/data-flow/">Oracle Cloud Infrastructure, Data Flow Service</a>
</td>
</tr>
<tr>
<td>
<img
src="https://upload.wikimedia.org/wikipedia/commons/2/24/IBM_Cloud_logo.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://www.ibm.com/products/big-data-and-analytics">IBM Cloud</a></td>
</tr>
</table>
# Demos
* [Using local pyspark, access data on local disk](examples/pyspark_local/readme.md)
* [Using local pyspark, access data on AWS S3](examples/pyspark_s3/readme.md)
* [Using on-premise spark, access data on HDFS](examples/livy_hdfs1/readme.md)
* [Using on-premise spark, access data on AWS S3](examples/livy_hdfs2/readme.md)
* [Using AWS EMR's spark, access data on AWS S3](examples/aws_emr/readme.md)
* [Using Oracle OCI's Dataflow with API key, access data on Object Storage](examples/oci_dataflow1/readme.md)
* [Using Oracle OCI's Dataflow with instance principal, access data on Object Storage](examples/oci_dataflow2/readme.md)
# APIs
[pydocs for APIs](https://stonezhong.github.io/spark_etl/pydocs/spark_etl.html)
## Job Deployer
For job deployers, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-deployer-classes) .
## Job Submitter
For job submitters, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-submitter-classes)
%package -n python3-spark-etl
Summary: Generic ETL Pipeline Framework for Apache Spark
Provides: python-spark-etl
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-spark-etl
* [Overview](#overview)
* [Goal](#goal)
* [Benefit](#benefit)
* [Application](#application)
* [Build your application](#build_your_application)
* [Deploy your application](#deploy_your_application)
* [Run your application](#run_your_application)
* [Supported platforms](#supported_platforms)
* [Demos](#demos)
* [APIs](#apis)
* [Job Deployer](#job-deployer)
* [Job Submitter](#job-submitter)
# Overview
## Goal
There are many public clouds provide managed Apache Spark as service, such as databricks, AWS EMR, Oracle OCI DataFlow, see the table below for a detailed list.
However, the way to deploy Spark application and launch Spark application are incompatible among different cloud Spark platforms.
spark-etl is a python package, provides a standard way for building, deploying and running your Spark application that supports various cloud spark platforms.
## Benefit
Your application using `spark-etl` can be deployed and launched from different cloud spark platforms without changing the source code.
## Application
An application is a python program. It contains:
* A `main.py` file which contains the application entry
* A `manifest.json` file, which specify the metadata of the application.
* A `requirements.txt` file, which specify the application dependency.
### Application entry signature
In your application's `main.py`, you shuold have a `main` function with the following signature:
* `spark` is the spark session object
* `input_args` a dict, is the argument user specified when running this application.
* `sysops` is the system options passed, it is platform specific. Job submitter may inject platform specific object in `sysops` object.
* Your `main` function's return value should be a JSON object, it will be returned from the job submitter to the caller.
```
def main(spark, input_args, sysops={}):
# your code here
```
[Here](examples/apps/demo01) is an application example.
## Build your application
`etl -a build -c <config-filename> -p <application-name>`
## Deploy your application
`etl -a deploy -c <config-filename> -p <application-name> -f <profile-name>`
## Run your application
`etl -a run -c <config-filename> -p <application-name> -f <profile-name> --run-args <input-filename>`
## Supported platforms
<table>
<tr>
<td>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Apache_Spark_logo.svg/1200px-Apache_Spark_logo.svg.png"
width="120px"
/>
</td>
<td>You setup your own Apache Spark Cluster.
</td>
</tr>
<tr>
<td>
<img src="https://miro.medium.com/max/700/1*qgkjkj6BLVS1uD4mw_sTEg.png" width="120px" />
</td>
<td>
Use <a href="https://pypi.org/project/pyspark/">PySpark</a> package, fully compatible to other spark platform, allows you to test your pipeline in a single computer.
</td>
</tr>
<tr>
<td>
<img src="https://databricks.com/wp-content/uploads/2019/02/databricks-generic-tile.png" width="120px">
</td>
<td>You host your spark cluster in <a href="https://databricks.com/">databricks </a></td>
</tr>
<tr>
<td>
<img
src="https://blog.ippon.tech/content/images/2019/06/emrlogogo.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://aws.amazon.com/emr/">Amazon AWS EMR</a>
</td>
</tr>
<tr>
<td>
<img
src="https://d15shllkswkct0.cloudfront.net/wp-content/blogs.dir/1/files/2020/07/100-768x402.jpeg"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://cloud.google.com/dataproc">Google Cloud</a></td>
</tr>
<tr>
<td>
<img
src="https://apifriends.com/wp-content/uploads/2018/05/HDInsightsDetails.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://azure.microsoft.com/en-us/services/hdinsight/">Microsoft Azure HDInsight</a></td>
</tr>
<tr>
<td>
<img
src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRajQVuckGogS3c8Yxa4M-OPd7yFCyWSj4Cpg&usqp=CAU"
width="120px"
/>
</td>
<td>
You host your spark cluster in <a href="https://www.oracle.com/big-data/data-flow/">Oracle Cloud Infrastructure, Data Flow Service</a>
</td>
</tr>
<tr>
<td>
<img
src="https://upload.wikimedia.org/wikipedia/commons/2/24/IBM_Cloud_logo.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://www.ibm.com/products/big-data-and-analytics">IBM Cloud</a></td>
</tr>
</table>
# Demos
* [Using local pyspark, access data on local disk](examples/pyspark_local/readme.md)
* [Using local pyspark, access data on AWS S3](examples/pyspark_s3/readme.md)
* [Using on-premise spark, access data on HDFS](examples/livy_hdfs1/readme.md)
* [Using on-premise spark, access data on AWS S3](examples/livy_hdfs2/readme.md)
* [Using AWS EMR's spark, access data on AWS S3](examples/aws_emr/readme.md)
* [Using Oracle OCI's Dataflow with API key, access data on Object Storage](examples/oci_dataflow1/readme.md)
* [Using Oracle OCI's Dataflow with instance principal, access data on Object Storage](examples/oci_dataflow2/readme.md)
# APIs
[pydocs for APIs](https://stonezhong.github.io/spark_etl/pydocs/spark_etl.html)
## Job Deployer
For job deployers, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-deployer-classes) .
## Job Submitter
For job submitters, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-submitter-classes)
%package help
Summary: Development documents and examples for spark-etl
Provides: python3-spark-etl-doc
%description help
* [Overview](#overview)
* [Goal](#goal)
* [Benefit](#benefit)
* [Application](#application)
* [Build your application](#build_your_application)
* [Deploy your application](#deploy_your_application)
* [Run your application](#run_your_application)
* [Supported platforms](#supported_platforms)
* [Demos](#demos)
* [APIs](#apis)
* [Job Deployer](#job-deployer)
* [Job Submitter](#job-submitter)
# Overview
## Goal
There are many public clouds provide managed Apache Spark as service, such as databricks, AWS EMR, Oracle OCI DataFlow, see the table below for a detailed list.
However, the way to deploy Spark application and launch Spark application are incompatible among different cloud Spark platforms.
spark-etl is a python package, provides a standard way for building, deploying and running your Spark application that supports various cloud spark platforms.
## Benefit
Your application using `spark-etl` can be deployed and launched from different cloud spark platforms without changing the source code.
## Application
An application is a python program. It contains:
* A `main.py` file which contains the application entry
* A `manifest.json` file, which specify the metadata of the application.
* A `requirements.txt` file, which specify the application dependency.
### Application entry signature
In your application's `main.py`, you shuold have a `main` function with the following signature:
* `spark` is the spark session object
* `input_args` a dict, is the argument user specified when running this application.
* `sysops` is the system options passed, it is platform specific. Job submitter may inject platform specific object in `sysops` object.
* Your `main` function's return value should be a JSON object, it will be returned from the job submitter to the caller.
```
def main(spark, input_args, sysops={}):
# your code here
```
[Here](examples/apps/demo01) is an application example.
## Build your application
`etl -a build -c <config-filename> -p <application-name>`
## Deploy your application
`etl -a deploy -c <config-filename> -p <application-name> -f <profile-name>`
## Run your application
`etl -a run -c <config-filename> -p <application-name> -f <profile-name> --run-args <input-filename>`
## Supported platforms
<table>
<tr>
<td>
<img
src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Apache_Spark_logo.svg/1200px-Apache_Spark_logo.svg.png"
width="120px"
/>
</td>
<td>You setup your own Apache Spark Cluster.
</td>
</tr>
<tr>
<td>
<img src="https://miro.medium.com/max/700/1*qgkjkj6BLVS1uD4mw_sTEg.png" width="120px" />
</td>
<td>
Use <a href="https://pypi.org/project/pyspark/">PySpark</a> package, fully compatible to other spark platform, allows you to test your pipeline in a single computer.
</td>
</tr>
<tr>
<td>
<img src="https://databricks.com/wp-content/uploads/2019/02/databricks-generic-tile.png" width="120px">
</td>
<td>You host your spark cluster in <a href="https://databricks.com/">databricks </a></td>
</tr>
<tr>
<td>
<img
src="https://blog.ippon.tech/content/images/2019/06/emrlogogo.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://aws.amazon.com/emr/">Amazon AWS EMR</a>
</td>
</tr>
<tr>
<td>
<img
src="https://d15shllkswkct0.cloudfront.net/wp-content/blogs.dir/1/files/2020/07/100-768x402.jpeg"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://cloud.google.com/dataproc">Google Cloud</a></td>
</tr>
<tr>
<td>
<img
src="https://apifriends.com/wp-content/uploads/2018/05/HDInsightsDetails.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://azure.microsoft.com/en-us/services/hdinsight/">Microsoft Azure HDInsight</a></td>
</tr>
<tr>
<td>
<img
src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRajQVuckGogS3c8Yxa4M-OPd7yFCyWSj4Cpg&usqp=CAU"
width="120px"
/>
</td>
<td>
You host your spark cluster in <a href="https://www.oracle.com/big-data/data-flow/">Oracle Cloud Infrastructure, Data Flow Service</a>
</td>
</tr>
<tr>
<td>
<img
src="https://upload.wikimedia.org/wikipedia/commons/2/24/IBM_Cloud_logo.png"
width="120px"
/>
</td>
<td>You host your spark cluster in <a href="https://www.ibm.com/products/big-data-and-analytics">IBM Cloud</a></td>
</tr>
</table>
# Demos
* [Using local pyspark, access data on local disk](examples/pyspark_local/readme.md)
* [Using local pyspark, access data on AWS S3](examples/pyspark_s3/readme.md)
* [Using on-premise spark, access data on HDFS](examples/livy_hdfs1/readme.md)
* [Using on-premise spark, access data on AWS S3](examples/livy_hdfs2/readme.md)
* [Using AWS EMR's spark, access data on AWS S3](examples/aws_emr/readme.md)
* [Using Oracle OCI's Dataflow with API key, access data on Object Storage](examples/oci_dataflow1/readme.md)
* [Using Oracle OCI's Dataflow with instance principal, access data on Object Storage](examples/oci_dataflow2/readme.md)
# APIs
[pydocs for APIs](https://stonezhong.github.io/spark_etl/pydocs/spark_etl.html)
## Job Deployer
For job deployers, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-deployer-classes) .
## Job Submitter
For job submitters, please check the [wiki](https://github.com/stonezhong/spark_etl/wiki#job-submitter-classes)
%prep
%autosetup -n spark-etl-0.0.122
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-spark-etl -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.122-1
- Package Spec generated
|