summaryrefslogtreecommitdiff
path: root/python-spectralcluster.spec
blob: 44f03a225b19b2d9ca55f9c1c783bc93e6cdc084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
%global _empty_manifest_terminate_build 0
Name:		python-spectralcluster
Version:	0.2.18
Release:	1
Summary:	Spectral Clustering
License:	Apache Software License
URL:		https://github.com/wq2012/SpectralCluster
Source0:	https://mirrors.aliyun.com/pypi/web/packages/22/62/65772203d69859c7a33cfc869360cd7931965306a26f187d2fd044afd882/spectralcluster-0.2.18.tar.gz
BuildArch:	noarch


%description
# Spectral Clustering
[![Python application](https://github.com/wq2012/SpectralCluster/workflows/Python%20application/badge.svg)](https://github.com/wq2012/SpectralCluster/actions) [![PyPI Version](https://img.shields.io/pypi/v/spectralcluster.svg)](https://pypi.python.org/pypi/spectralcluster) [![Python Versions](https://img.shields.io/pypi/pyversions/spectralcluster.svg)](https://pypi.org/project/spectralcluster) [![Downloads](https://pepy.tech/badge/spectralcluster)](https://pepy.tech/project/spectralcluster) [![codecov](https://codecov.io/gh/wq2012/SpectralCluster/branch/master/graph/badge.svg)](https://codecov.io/gh/wq2012/SpectralCluster) [![Documentation](https://img.shields.io/badge/api-documentation-blue.svg)](https://wq2012.github.io/SpectralCluster)

## Overview

This is a Python re-implementation of the spectral clustering and
constrained spectral clustering algorithms in these papers:

* [Speaker Diarization with LSTM](https://google.github.io/speaker-id/publications/LstmDiarization/)
* [Turn-to-Diarize: Online Speaker Diarization Constrained by Transformer Transducer Speaker Turn Detection](https://arxiv.org/abs/2109.11641)
* [Highly Efficient Real-Time Streaming and Fully On-Device Speaker Diarization with Multi-Stage Clustering](https://arxiv.org/abs/2210.13690)

![refinement](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/refinement.png)

## Notice

We recently added new functionalities to this library to include
 algorithms in a [new paper](https://arxiv.org/abs/2109.11641). We updated the APIs as well.

If you depend on our old API, please use an **older version** of this library:
```
pip3 install spectralcluster==0.1.0
```

## Disclaimer

**This is not a Google product.**

**This is not the original C++ implementation used by the paper.**

## Dependencies

* numpy
* scipy
* scikit-learn

## Installation

Install the [package](https://pypi.org/project/spectralcluster/) by:

```bash
pip3 install spectralcluster
```

or

```bash
python3 -m pip install spectralcluster
```

## Tutorial

Simply use the `predict()` method of class `SpectralClusterer` to perform
spectral clustering. The example below should be closest to the original C++
implemention used our
[ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/).

```python
from spectralcluster import configs

labels = configs.icassp2018_clusterer.predict(X)
```

The input `X` is a numpy array of shape `(n_samples, n_features)`,
and the returned `labels` is a numpy array of shape `(n_samples,)`.

You can also create your own clusterer like this:

```
from spectralcluster import SpectralClusterer

clusterer = SpectralClusterer(
    min_clusters=2,
    max_clusters=7,
    autotune=None,
    laplacian_type=None,
    refinement_options=None,
    custom_dist="cosine")

labels = clusterer.predict(X)
```

For the complete list of parameters of `SpectralClusterer`, see
`spectralcluster/spectral_clusterer.py`.

[![youtube_screenshot_icassp2018](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/youtube_screenshot_icassp2018.jpg)](https://youtu.be/pjxGPZQeeO4)
[![youtube_screenshot_icassp2022](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/youtube_screenshot_icassp2022.png)](https://youtu.be/U79Aw1ky7ag)

## Advanced features

### Refinement operations

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/), we apply a sequence of refinment operations on the affinity matrix, which is critical to the performance on the speaker diarization results.

You can specify your refinment operations like this:

```
from spectralcluster import RefinementOptions
from spectralcluster import ThresholdType
from spectralcluster import ICASSP2018_REFINEMENT_SEQUENCE

refinement_options = RefinementOptions(
    gaussian_blur_sigma=1,
    p_percentile=0.95,
    thresholding_soft_multiplier=0.01,
    thresholding_type=ThresholdType.RowMax,
    refinement_sequence=ICASSP2018_REFINEMENT_SEQUENCE)
```

Then you can pass the `refinement_options` as an argument when initializing your
`SpectralClusterer` object.

For the complete list of `RefinementOptions`, see
`spectralcluster/refinement.py`.

### Laplacian matrix

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
we apply a refinement operation `CropDiagonal` on the affinity matrix, which replaces each diagonal element of the affinity matrix by the max non-diagonal value of the row. After this operation, the matrix has similar properties to a standard Laplacian matrix, and it is also less sensitive (thus more robust) to the Gaussian blur operation than a standard Laplacian matrix.

In the new version of this library, we support different types of Laplacian matrix now, including:

* None Laplacian (affinity matrix): `W`
* Unnormalized Laplacian: `L = D - W`
* Graph cut Laplacian: `L' = D^{-1/2} * L * D^{-1/2}`
* Random walk Laplacian: `L' = D^{-1} * L`

You can specify the Laplacian matrix type with the `laplacian_type` argument of the `SpectralClusterer` class.

Note: Refinement operations are applied to the affinity matrix **before** computing the Laplacian matrix.

### Distance for K-Means

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
the K-Means is based on Cosine distance.

You can set `custom_dist="cosine"` when initializing your `SpectralClusterer` object.

You can also use other distances supported by [scipy.spatial.distance](https://docs.scipy.org/doc/scipy/reference/spatial.distance.html), such as `"euclidean"` or `"mahalanobis"`.

### Affinity matrix

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
the affinity between two embeddings is defined as `(cos(x,y)+1)/2`.

You can also use other affinity functions by setting `affinity_function` when initializing your `SpectralClusterer` object.

### Auto-tune

We also support auto-tuning the `p_percentile` parameter of the `RowWiseThreshold` refinement operation, which was original proposed in [this paper](https://arxiv.org/abs/2003.02405).

You can enable this by passing in an `AutoTune` object to the `autotune` argument when initializing your `SpectralClusterer` object.

Example:

```python
from spectralcluster import AutoTune, AutoTuneProxy

autotune = AutoTune(
    p_percentile_min=0.60,
    p_percentile_max=0.95,
    init_search_step=0.01,
    search_level=3,
    proxy=AutoTuneProxy.PercentileSqrtOverNME)
```

For the complete list of parameters of `AutoTune`, see
`spectralcluster/autotune.py`.

### Fallback clusterer

Spectral clustering exploits the global structure of the data. But there are
cases where spectral clustering does not work as well as some other simpler
clustering methods, such as when the number of embeddings is too small.

When initializing the `SpectralClusterer` object, you can pass in a `FallbackOptions` object to the `fallback_options` argument, to use a fallback clusterer under certain conditions.

Also, spectral clustering and eigen-gap may not work well at making single-vs-multi cluster decisions. When `min_clusters=1`, we can also specify `FallbackOptions.single_cluster_condition` and `FallbackOptions.single_cluster_affinity_threshold` to help determine single cluster cases by thresdholding the affinity matrix.

For the complete list of parameters of `FallbackOptions`, see `spectralcluster/fallback_clusterer.py`.

### Speed up the clustering

Spectral clustering can become slow when the number of input embeddings is large. This is due to the high costs of steps such as computing the Laplacian matrix, and eigen decomposition of the Laplacian matrix. One trick to speed up the spectral clustering when the input size is large is to use hierarchical clustering as a pre-clustering step.

To use this feature, you can specify the `max_spectral_size` argument when constructing the `SpectralClusterer` object. For example, if you set `max_spectral_size=200`, then the Laplacian matrix can be at most `200 * 200`.

But please note that setting `max_spectral_size` may cause degradations of the final clustering quality. So please use this feature wisely.

### Constrained spectral clustering

![turn-to-diarize-diagram](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/turn-to-diarize.png)

In the [Turn-to-Diarize paper](https://arxiv.org/abs/2109.11641),
the spectral clustering is constrained by speaker turns.
We implemented two constrained spectral clustering methods:

* Affinity integration.
* Constraint propagation (see paper [[1](https://link.springer.com/chapter/10.1007/978-3-642-15567-3_1)] and [[2](https://arxiv.org/abs/1109.4684)]).

If you pass in a `ConstraintOptions` object when initializing your `SpectralClusterer` object, you can call the `predict` function with a `constraint_matrix`.

Example usage:

```python
from spectralcluster import constraint

ConstraintName = constraint.ConstraintName

constraint_options = constraint.ConstraintOptions(
    constraint_name=ConstraintName.ConstraintPropagation,
    apply_before_refinement=True,
    constraint_propagation_alpha=0.6)

clusterer = spectral_clusterer.SpectralClusterer(
    max_clusters=2,
    refinement_options=refinement_options,
    constraint_options=constraint_options,
    laplacian_type=LaplacianType.GraphCut,
    row_wise_renorm=True)

labels = clusterer.predict(matrix, constraint_matrix)
```

The constraint matrix can be constructed from a `speaker_turn_scores` list:

```python
from spectralcluster import constraint

constraint_matrix = constraint.ConstraintMatrix(
    speaker_turn_scores, threshold=1).compute_diagonals()
```

## Citations

Our papers are cited as:

```
@inproceedings{wang2018speaker,
  title={{Speaker Diarization with LSTM}},
  author={Wang, Quan and Downey, Carlton and Wan, Li and Mansfield, Philip Andrew and Moreno, Ignacio Lopz},
  booktitle={2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5239--5243},
  year={2018},
  organization={IEEE}
}

@inproceedings{xia2022turn,
  title={{Turn-to-Diarize: Online Speaker Diarization Constrained by Transformer Transducer Speaker Turn Detection}},
  author={Wei Xia and Han Lu and Quan Wang and Anshuman Tripathi and Yiling Huang and Ignacio Lopez Moreno and Hasim Sak},
  booktitle={2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={8077--8081},
  year={2022},
  organization={IEEE}
}

@article{wang2022highly,
  title={Highly Efficient Real-Time Streaming and Fully On-Device Speaker Diarization with Multi-Stage Clustering},
  author={Quan Wang and Yiling Huang and Han Lu and Guanlong Zhao and Ignacio Lopez Moreno},
  journal={arXiv:2210.13690},
  year={2022}
}
```

## Misc

We also have fully supervised speaker diarization systems, powered by
[uis-rnn](https://github.com/google/uis-rnn).
Check this [Google AI Blog](https://ai.googleblog.com/2018/11/accurate-online-speaker-diarization.html).

To learn more about speaker diarization, you can check out:
* A curated list of resources:
[awesome-diarization](https://github.com/wq2012/awesome-diarization)
* An online course on Udemy: [A Tutorial on Speaker Diarization](https://www.udemy.com/course/diarization/?referralCode=21D7CC0AEABB7FE3680F)


%package -n python3-spectralcluster
Summary:	Spectral Clustering
Provides:	python-spectralcluster
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-spectralcluster
# Spectral Clustering
[![Python application](https://github.com/wq2012/SpectralCluster/workflows/Python%20application/badge.svg)](https://github.com/wq2012/SpectralCluster/actions) [![PyPI Version](https://img.shields.io/pypi/v/spectralcluster.svg)](https://pypi.python.org/pypi/spectralcluster) [![Python Versions](https://img.shields.io/pypi/pyversions/spectralcluster.svg)](https://pypi.org/project/spectralcluster) [![Downloads](https://pepy.tech/badge/spectralcluster)](https://pepy.tech/project/spectralcluster) [![codecov](https://codecov.io/gh/wq2012/SpectralCluster/branch/master/graph/badge.svg)](https://codecov.io/gh/wq2012/SpectralCluster) [![Documentation](https://img.shields.io/badge/api-documentation-blue.svg)](https://wq2012.github.io/SpectralCluster)

## Overview

This is a Python re-implementation of the spectral clustering and
constrained spectral clustering algorithms in these papers:

* [Speaker Diarization with LSTM](https://google.github.io/speaker-id/publications/LstmDiarization/)
* [Turn-to-Diarize: Online Speaker Diarization Constrained by Transformer Transducer Speaker Turn Detection](https://arxiv.org/abs/2109.11641)
* [Highly Efficient Real-Time Streaming and Fully On-Device Speaker Diarization with Multi-Stage Clustering](https://arxiv.org/abs/2210.13690)

![refinement](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/refinement.png)

## Notice

We recently added new functionalities to this library to include
 algorithms in a [new paper](https://arxiv.org/abs/2109.11641). We updated the APIs as well.

If you depend on our old API, please use an **older version** of this library:
```
pip3 install spectralcluster==0.1.0
```

## Disclaimer

**This is not a Google product.**

**This is not the original C++ implementation used by the paper.**

## Dependencies

* numpy
* scipy
* scikit-learn

## Installation

Install the [package](https://pypi.org/project/spectralcluster/) by:

```bash
pip3 install spectralcluster
```

or

```bash
python3 -m pip install spectralcluster
```

## Tutorial

Simply use the `predict()` method of class `SpectralClusterer` to perform
spectral clustering. The example below should be closest to the original C++
implemention used our
[ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/).

```python
from spectralcluster import configs

labels = configs.icassp2018_clusterer.predict(X)
```

The input `X` is a numpy array of shape `(n_samples, n_features)`,
and the returned `labels` is a numpy array of shape `(n_samples,)`.

You can also create your own clusterer like this:

```
from spectralcluster import SpectralClusterer

clusterer = SpectralClusterer(
    min_clusters=2,
    max_clusters=7,
    autotune=None,
    laplacian_type=None,
    refinement_options=None,
    custom_dist="cosine")

labels = clusterer.predict(X)
```

For the complete list of parameters of `SpectralClusterer`, see
`spectralcluster/spectral_clusterer.py`.

[![youtube_screenshot_icassp2018](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/youtube_screenshot_icassp2018.jpg)](https://youtu.be/pjxGPZQeeO4)
[![youtube_screenshot_icassp2022](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/youtube_screenshot_icassp2022.png)](https://youtu.be/U79Aw1ky7ag)

## Advanced features

### Refinement operations

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/), we apply a sequence of refinment operations on the affinity matrix, which is critical to the performance on the speaker diarization results.

You can specify your refinment operations like this:

```
from spectralcluster import RefinementOptions
from spectralcluster import ThresholdType
from spectralcluster import ICASSP2018_REFINEMENT_SEQUENCE

refinement_options = RefinementOptions(
    gaussian_blur_sigma=1,
    p_percentile=0.95,
    thresholding_soft_multiplier=0.01,
    thresholding_type=ThresholdType.RowMax,
    refinement_sequence=ICASSP2018_REFINEMENT_SEQUENCE)
```

Then you can pass the `refinement_options` as an argument when initializing your
`SpectralClusterer` object.

For the complete list of `RefinementOptions`, see
`spectralcluster/refinement.py`.

### Laplacian matrix

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
we apply a refinement operation `CropDiagonal` on the affinity matrix, which replaces each diagonal element of the affinity matrix by the max non-diagonal value of the row. After this operation, the matrix has similar properties to a standard Laplacian matrix, and it is also less sensitive (thus more robust) to the Gaussian blur operation than a standard Laplacian matrix.

In the new version of this library, we support different types of Laplacian matrix now, including:

* None Laplacian (affinity matrix): `W`
* Unnormalized Laplacian: `L = D - W`
* Graph cut Laplacian: `L' = D^{-1/2} * L * D^{-1/2}`
* Random walk Laplacian: `L' = D^{-1} * L`

You can specify the Laplacian matrix type with the `laplacian_type` argument of the `SpectralClusterer` class.

Note: Refinement operations are applied to the affinity matrix **before** computing the Laplacian matrix.

### Distance for K-Means

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
the K-Means is based on Cosine distance.

You can set `custom_dist="cosine"` when initializing your `SpectralClusterer` object.

You can also use other distances supported by [scipy.spatial.distance](https://docs.scipy.org/doc/scipy/reference/spatial.distance.html), such as `"euclidean"` or `"mahalanobis"`.

### Affinity matrix

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
the affinity between two embeddings is defined as `(cos(x,y)+1)/2`.

You can also use other affinity functions by setting `affinity_function` when initializing your `SpectralClusterer` object.

### Auto-tune

We also support auto-tuning the `p_percentile` parameter of the `RowWiseThreshold` refinement operation, which was original proposed in [this paper](https://arxiv.org/abs/2003.02405).

You can enable this by passing in an `AutoTune` object to the `autotune` argument when initializing your `SpectralClusterer` object.

Example:

```python
from spectralcluster import AutoTune, AutoTuneProxy

autotune = AutoTune(
    p_percentile_min=0.60,
    p_percentile_max=0.95,
    init_search_step=0.01,
    search_level=3,
    proxy=AutoTuneProxy.PercentileSqrtOverNME)
```

For the complete list of parameters of `AutoTune`, see
`spectralcluster/autotune.py`.

### Fallback clusterer

Spectral clustering exploits the global structure of the data. But there are
cases where spectral clustering does not work as well as some other simpler
clustering methods, such as when the number of embeddings is too small.

When initializing the `SpectralClusterer` object, you can pass in a `FallbackOptions` object to the `fallback_options` argument, to use a fallback clusterer under certain conditions.

Also, spectral clustering and eigen-gap may not work well at making single-vs-multi cluster decisions. When `min_clusters=1`, we can also specify `FallbackOptions.single_cluster_condition` and `FallbackOptions.single_cluster_affinity_threshold` to help determine single cluster cases by thresdholding the affinity matrix.

For the complete list of parameters of `FallbackOptions`, see `spectralcluster/fallback_clusterer.py`.

### Speed up the clustering

Spectral clustering can become slow when the number of input embeddings is large. This is due to the high costs of steps such as computing the Laplacian matrix, and eigen decomposition of the Laplacian matrix. One trick to speed up the spectral clustering when the input size is large is to use hierarchical clustering as a pre-clustering step.

To use this feature, you can specify the `max_spectral_size` argument when constructing the `SpectralClusterer` object. For example, if you set `max_spectral_size=200`, then the Laplacian matrix can be at most `200 * 200`.

But please note that setting `max_spectral_size` may cause degradations of the final clustering quality. So please use this feature wisely.

### Constrained spectral clustering

![turn-to-diarize-diagram](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/turn-to-diarize.png)

In the [Turn-to-Diarize paper](https://arxiv.org/abs/2109.11641),
the spectral clustering is constrained by speaker turns.
We implemented two constrained spectral clustering methods:

* Affinity integration.
* Constraint propagation (see paper [[1](https://link.springer.com/chapter/10.1007/978-3-642-15567-3_1)] and [[2](https://arxiv.org/abs/1109.4684)]).

If you pass in a `ConstraintOptions` object when initializing your `SpectralClusterer` object, you can call the `predict` function with a `constraint_matrix`.

Example usage:

```python
from spectralcluster import constraint

ConstraintName = constraint.ConstraintName

constraint_options = constraint.ConstraintOptions(
    constraint_name=ConstraintName.ConstraintPropagation,
    apply_before_refinement=True,
    constraint_propagation_alpha=0.6)

clusterer = spectral_clusterer.SpectralClusterer(
    max_clusters=2,
    refinement_options=refinement_options,
    constraint_options=constraint_options,
    laplacian_type=LaplacianType.GraphCut,
    row_wise_renorm=True)

labels = clusterer.predict(matrix, constraint_matrix)
```

The constraint matrix can be constructed from a `speaker_turn_scores` list:

```python
from spectralcluster import constraint

constraint_matrix = constraint.ConstraintMatrix(
    speaker_turn_scores, threshold=1).compute_diagonals()
```

## Citations

Our papers are cited as:

```
@inproceedings{wang2018speaker,
  title={{Speaker Diarization with LSTM}},
  author={Wang, Quan and Downey, Carlton and Wan, Li and Mansfield, Philip Andrew and Moreno, Ignacio Lopz},
  booktitle={2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5239--5243},
  year={2018},
  organization={IEEE}
}

@inproceedings{xia2022turn,
  title={{Turn-to-Diarize: Online Speaker Diarization Constrained by Transformer Transducer Speaker Turn Detection}},
  author={Wei Xia and Han Lu and Quan Wang and Anshuman Tripathi and Yiling Huang and Ignacio Lopez Moreno and Hasim Sak},
  booktitle={2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={8077--8081},
  year={2022},
  organization={IEEE}
}

@article{wang2022highly,
  title={Highly Efficient Real-Time Streaming and Fully On-Device Speaker Diarization with Multi-Stage Clustering},
  author={Quan Wang and Yiling Huang and Han Lu and Guanlong Zhao and Ignacio Lopez Moreno},
  journal={arXiv:2210.13690},
  year={2022}
}
```

## Misc

We also have fully supervised speaker diarization systems, powered by
[uis-rnn](https://github.com/google/uis-rnn).
Check this [Google AI Blog](https://ai.googleblog.com/2018/11/accurate-online-speaker-diarization.html).

To learn more about speaker diarization, you can check out:
* A curated list of resources:
[awesome-diarization](https://github.com/wq2012/awesome-diarization)
* An online course on Udemy: [A Tutorial on Speaker Diarization](https://www.udemy.com/course/diarization/?referralCode=21D7CC0AEABB7FE3680F)


%package help
Summary:	Development documents and examples for spectralcluster
Provides:	python3-spectralcluster-doc
%description help
# Spectral Clustering
[![Python application](https://github.com/wq2012/SpectralCluster/workflows/Python%20application/badge.svg)](https://github.com/wq2012/SpectralCluster/actions) [![PyPI Version](https://img.shields.io/pypi/v/spectralcluster.svg)](https://pypi.python.org/pypi/spectralcluster) [![Python Versions](https://img.shields.io/pypi/pyversions/spectralcluster.svg)](https://pypi.org/project/spectralcluster) [![Downloads](https://pepy.tech/badge/spectralcluster)](https://pepy.tech/project/spectralcluster) [![codecov](https://codecov.io/gh/wq2012/SpectralCluster/branch/master/graph/badge.svg)](https://codecov.io/gh/wq2012/SpectralCluster) [![Documentation](https://img.shields.io/badge/api-documentation-blue.svg)](https://wq2012.github.io/SpectralCluster)

## Overview

This is a Python re-implementation of the spectral clustering and
constrained spectral clustering algorithms in these papers:

* [Speaker Diarization with LSTM](https://google.github.io/speaker-id/publications/LstmDiarization/)
* [Turn-to-Diarize: Online Speaker Diarization Constrained by Transformer Transducer Speaker Turn Detection](https://arxiv.org/abs/2109.11641)
* [Highly Efficient Real-Time Streaming and Fully On-Device Speaker Diarization with Multi-Stage Clustering](https://arxiv.org/abs/2210.13690)

![refinement](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/refinement.png)

## Notice

We recently added new functionalities to this library to include
 algorithms in a [new paper](https://arxiv.org/abs/2109.11641). We updated the APIs as well.

If you depend on our old API, please use an **older version** of this library:
```
pip3 install spectralcluster==0.1.0
```

## Disclaimer

**This is not a Google product.**

**This is not the original C++ implementation used by the paper.**

## Dependencies

* numpy
* scipy
* scikit-learn

## Installation

Install the [package](https://pypi.org/project/spectralcluster/) by:

```bash
pip3 install spectralcluster
```

or

```bash
python3 -m pip install spectralcluster
```

## Tutorial

Simply use the `predict()` method of class `SpectralClusterer` to perform
spectral clustering. The example below should be closest to the original C++
implemention used our
[ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/).

```python
from spectralcluster import configs

labels = configs.icassp2018_clusterer.predict(X)
```

The input `X` is a numpy array of shape `(n_samples, n_features)`,
and the returned `labels` is a numpy array of shape `(n_samples,)`.

You can also create your own clusterer like this:

```
from spectralcluster import SpectralClusterer

clusterer = SpectralClusterer(
    min_clusters=2,
    max_clusters=7,
    autotune=None,
    laplacian_type=None,
    refinement_options=None,
    custom_dist="cosine")

labels = clusterer.predict(X)
```

For the complete list of parameters of `SpectralClusterer`, see
`spectralcluster/spectral_clusterer.py`.

[![youtube_screenshot_icassp2018](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/youtube_screenshot_icassp2018.jpg)](https://youtu.be/pjxGPZQeeO4)
[![youtube_screenshot_icassp2022](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/youtube_screenshot_icassp2022.png)](https://youtu.be/U79Aw1ky7ag)

## Advanced features

### Refinement operations

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/), we apply a sequence of refinment operations on the affinity matrix, which is critical to the performance on the speaker diarization results.

You can specify your refinment operations like this:

```
from spectralcluster import RefinementOptions
from spectralcluster import ThresholdType
from spectralcluster import ICASSP2018_REFINEMENT_SEQUENCE

refinement_options = RefinementOptions(
    gaussian_blur_sigma=1,
    p_percentile=0.95,
    thresholding_soft_multiplier=0.01,
    thresholding_type=ThresholdType.RowMax,
    refinement_sequence=ICASSP2018_REFINEMENT_SEQUENCE)
```

Then you can pass the `refinement_options` as an argument when initializing your
`SpectralClusterer` object.

For the complete list of `RefinementOptions`, see
`spectralcluster/refinement.py`.

### Laplacian matrix

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
we apply a refinement operation `CropDiagonal` on the affinity matrix, which replaces each diagonal element of the affinity matrix by the max non-diagonal value of the row. After this operation, the matrix has similar properties to a standard Laplacian matrix, and it is also less sensitive (thus more robust) to the Gaussian blur operation than a standard Laplacian matrix.

In the new version of this library, we support different types of Laplacian matrix now, including:

* None Laplacian (affinity matrix): `W`
* Unnormalized Laplacian: `L = D - W`
* Graph cut Laplacian: `L' = D^{-1/2} * L * D^{-1/2}`
* Random walk Laplacian: `L' = D^{-1} * L`

You can specify the Laplacian matrix type with the `laplacian_type` argument of the `SpectralClusterer` class.

Note: Refinement operations are applied to the affinity matrix **before** computing the Laplacian matrix.

### Distance for K-Means

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
the K-Means is based on Cosine distance.

You can set `custom_dist="cosine"` when initializing your `SpectralClusterer` object.

You can also use other distances supported by [scipy.spatial.distance](https://docs.scipy.org/doc/scipy/reference/spatial.distance.html), such as `"euclidean"` or `"mahalanobis"`.

### Affinity matrix

In our [ICASSP 2018 paper](https://google.github.io/speaker-id/publications/LstmDiarization/),
the affinity between two embeddings is defined as `(cos(x,y)+1)/2`.

You can also use other affinity functions by setting `affinity_function` when initializing your `SpectralClusterer` object.

### Auto-tune

We also support auto-tuning the `p_percentile` parameter of the `RowWiseThreshold` refinement operation, which was original proposed in [this paper](https://arxiv.org/abs/2003.02405).

You can enable this by passing in an `AutoTune` object to the `autotune` argument when initializing your `SpectralClusterer` object.

Example:

```python
from spectralcluster import AutoTune, AutoTuneProxy

autotune = AutoTune(
    p_percentile_min=0.60,
    p_percentile_max=0.95,
    init_search_step=0.01,
    search_level=3,
    proxy=AutoTuneProxy.PercentileSqrtOverNME)
```

For the complete list of parameters of `AutoTune`, see
`spectralcluster/autotune.py`.

### Fallback clusterer

Spectral clustering exploits the global structure of the data. But there are
cases where spectral clustering does not work as well as some other simpler
clustering methods, such as when the number of embeddings is too small.

When initializing the `SpectralClusterer` object, you can pass in a `FallbackOptions` object to the `fallback_options` argument, to use a fallback clusterer under certain conditions.

Also, spectral clustering and eigen-gap may not work well at making single-vs-multi cluster decisions. When `min_clusters=1`, we can also specify `FallbackOptions.single_cluster_condition` and `FallbackOptions.single_cluster_affinity_threshold` to help determine single cluster cases by thresdholding the affinity matrix.

For the complete list of parameters of `FallbackOptions`, see `spectralcluster/fallback_clusterer.py`.

### Speed up the clustering

Spectral clustering can become slow when the number of input embeddings is large. This is due to the high costs of steps such as computing the Laplacian matrix, and eigen decomposition of the Laplacian matrix. One trick to speed up the spectral clustering when the input size is large is to use hierarchical clustering as a pre-clustering step.

To use this feature, you can specify the `max_spectral_size` argument when constructing the `SpectralClusterer` object. For example, if you set `max_spectral_size=200`, then the Laplacian matrix can be at most `200 * 200`.

But please note that setting `max_spectral_size` may cause degradations of the final clustering quality. So please use this feature wisely.

### Constrained spectral clustering

![turn-to-diarize-diagram](https://raw.githubusercontent.com/wq2012/SpectralCluster/master/resources/turn-to-diarize.png)

In the [Turn-to-Diarize paper](https://arxiv.org/abs/2109.11641),
the spectral clustering is constrained by speaker turns.
We implemented two constrained spectral clustering methods:

* Affinity integration.
* Constraint propagation (see paper [[1](https://link.springer.com/chapter/10.1007/978-3-642-15567-3_1)] and [[2](https://arxiv.org/abs/1109.4684)]).

If you pass in a `ConstraintOptions` object when initializing your `SpectralClusterer` object, you can call the `predict` function with a `constraint_matrix`.

Example usage:

```python
from spectralcluster import constraint

ConstraintName = constraint.ConstraintName

constraint_options = constraint.ConstraintOptions(
    constraint_name=ConstraintName.ConstraintPropagation,
    apply_before_refinement=True,
    constraint_propagation_alpha=0.6)

clusterer = spectral_clusterer.SpectralClusterer(
    max_clusters=2,
    refinement_options=refinement_options,
    constraint_options=constraint_options,
    laplacian_type=LaplacianType.GraphCut,
    row_wise_renorm=True)

labels = clusterer.predict(matrix, constraint_matrix)
```

The constraint matrix can be constructed from a `speaker_turn_scores` list:

```python
from spectralcluster import constraint

constraint_matrix = constraint.ConstraintMatrix(
    speaker_turn_scores, threshold=1).compute_diagonals()
```

## Citations

Our papers are cited as:

```
@inproceedings{wang2018speaker,
  title={{Speaker Diarization with LSTM}},
  author={Wang, Quan and Downey, Carlton and Wan, Li and Mansfield, Philip Andrew and Moreno, Ignacio Lopz},
  booktitle={2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5239--5243},
  year={2018},
  organization={IEEE}
}

@inproceedings{xia2022turn,
  title={{Turn-to-Diarize: Online Speaker Diarization Constrained by Transformer Transducer Speaker Turn Detection}},
  author={Wei Xia and Han Lu and Quan Wang and Anshuman Tripathi and Yiling Huang and Ignacio Lopez Moreno and Hasim Sak},
  booktitle={2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={8077--8081},
  year={2022},
  organization={IEEE}
}

@article{wang2022highly,
  title={Highly Efficient Real-Time Streaming and Fully On-Device Speaker Diarization with Multi-Stage Clustering},
  author={Quan Wang and Yiling Huang and Han Lu and Guanlong Zhao and Ignacio Lopez Moreno},
  journal={arXiv:2210.13690},
  year={2022}
}
```

## Misc

We also have fully supervised speaker diarization systems, powered by
[uis-rnn](https://github.com/google/uis-rnn).
Check this [Google AI Blog](https://ai.googleblog.com/2018/11/accurate-online-speaker-diarization.html).

To learn more about speaker diarization, you can check out:
* A curated list of resources:
[awesome-diarization](https://github.com/wq2012/awesome-diarization)
* An online course on Udemy: [A Tutorial on Speaker Diarization](https://www.udemy.com/course/diarization/?referralCode=21D7CC0AEABB7FE3680F)


%prep
%autosetup -n spectralcluster-0.2.18

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-spectralcluster -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.18-1
- Package Spec generated