summaryrefslogtreecommitdiff
path: root/python-split-folders.spec
blob: 3f9c931064a98db45686bbb6297469dcff96728c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
%global _empty_manifest_terminate_build 0
Name:		python-split-folders
Version:	0.5.1
Release:	1
Summary:	Split folders with files (e.g. images) into training, validation and test (dataset) folders.
License:	MIT
URL:		https://github.com/jfilter/split-folders
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/a7/4c/32d2d49b82ea5baf0ff1a55de88c7fb8a0bf2aab02763c8501b2a51bf55f/split_folders-0.5.1.tar.gz
BuildArch:	noarch

Requires:	python3-tqdm

%description
# `split-folders` [![Build Status](https://img.shields.io/github/workflow/status/jfilter/split-folders/Test)](https://github.com/jfilter/split-folders/actions/workflows/test.yml) [![PyPI](https://img.shields.io/pypi/v/split-folders.svg)](https://pypi.org/project/split-folders/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/split-folders.svg)](https://pypi.org/project/split-folders/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/split-folders)](https://pypistats.org/packages/split-folders)

Split folders with files (e.g. images) into **train**, **validation** and **test** (dataset) folders.

The input folder should have the following format:

```
input/
    class1/
        img1.jpg
        img2.jpg
        ...
    class2/
        imgWhatever.jpg
        ...
    ...
```

In order to give you this:

```
output/
    train/
        class1/
            img1.jpg
            ...
        class2/
            imga.jpg
            ...
    val/
        class1/
            img2.jpg
            ...
        class2/
            imgb.jpg
            ...
    test/
        class1/
            img3.jpg
            ...
        class2/
            imgc.jpg
            ...
```

This should get you started to do some serious deep learning on your data. [Read here](https://stats.stackexchange.com/questions/19048/what-is-the-difference-between-test-set-and-validation-set) why it's a good idea to split your data intro three different sets.

-   Split files into a training set and a validation set (and optionally a test set).
-   Works on any file types.
-   The files get shuffled.
-   A [seed](https://docs.python.org/3/library/random.html#random.seed) makes splits reproducible.
-   Allows randomized [oversampling](https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis) for imbalanced datasets.
-   Optionally group files by prefix.
-   (Should) work on all operating systems.

## Install

This package is Python only and there are no external dependencies.

```bash
pip install split-folders
```

Optionally, you may install [tqdm](https://github.com/tqdm/tqdm) to get get a progress bar when moving files.

```bash
pip install split-folders[full]
```

## Usage

You can use `split-folders` as Python module or as a Command Line Interface (CLI).

If your datasets is balanced (each class has the same number of samples), choose `ratio` otherwise `fixed`.
NB: oversampling is turned off by default.
Oversampling is only applied to the _train_ folder since having duplicates in _val_ or _test_ would be considered cheating.

### Module

```python
import splitfolders

# Split with a ratio.
# To only split into training and validation set, set a tuple to `ratio`, i.e, `(.8, .2)`.
splitfolders.ratio("input_folder", output="output",
    seed=1337, ratio=(.8, .1, .1), group_prefix=None, move=False) # default values

# Split val/test with a fixed number of items, e.g. `(100, 100)`, for each set.
# To only split into training and validation set, use a single number to `fixed`, i.e., `10`.
# Set 3 values, e.g. `(300, 100, 100)`, to limit the number of training values.
splitfolders.fixed("input_folder", output="output",
    seed=1337, fixed=(100, 100), oversample=False, group_prefix=None, move=False) # default values
```

Occasionally, you may have things that comprise more than a single file (e.g. picture (.png) + annotation (.txt)).
`splitfolders` lets you split files into equally-sized groups based on their prefix.
Set `group_prefix` to the length of the group (e.g. `2`).
But now _all_ files should be part of groups.

Set `move=True` if you want to move the files instead of copying.

### CLI

```
Usage:
    splitfolders [--output] [--ratio] [--fixed] [--seed] [--oversample] [--group_prefix] [--move] folder_with_images
Options:
    --output        path to the output folder. defaults to `output`. Get created if non-existent.
    --ratio         the ratio to split. e.g. for train/val/test `.8 .1 .1 --` or for train/val `.8 .2 --`.
    --fixed         set the absolute number of items per validation/test set. The remaining items constitute
                    the training set. e.g. for train/val/test `100 100` or for train/val `100`.
                    Set 3 values, e.g. `300 100 100`, to limit the number of training values.
    --seed          set seed value for shuffling the items. defaults to 1337.
    --oversample    enable oversampling of imbalanced datasets, works only with --fixed.
    --group_prefix  split files into equally-sized groups based on their prefix
    --move          move the files instead of copying
Example:
    splitfolders --ratio .8 .1 .1 -- folder_with_images
```

Because of some [Python quirks](https://github.com/jfilter/split-folders/issues/19) you have to prepend ` --` afer using `--ratio`.

Instead of the command `splitfolders` you can also use `split_folders` or `split-folders`.

## Development

Install and use [poetry](https://python-poetry.org/).

## Contributing

If you have a **question**, found a **bug** or want to propose a new **feature**, have a look at the [issues page](https://github.com/jfilter/split-folders/issues).

**Pull requests** are especially welcomed when they fix bugs or improve the code quality.

## License

MIT


%package -n python3-split-folders
Summary:	Split folders with files (e.g. images) into training, validation and test (dataset) folders.
Provides:	python-split-folders
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-split-folders
# `split-folders` [![Build Status](https://img.shields.io/github/workflow/status/jfilter/split-folders/Test)](https://github.com/jfilter/split-folders/actions/workflows/test.yml) [![PyPI](https://img.shields.io/pypi/v/split-folders.svg)](https://pypi.org/project/split-folders/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/split-folders.svg)](https://pypi.org/project/split-folders/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/split-folders)](https://pypistats.org/packages/split-folders)

Split folders with files (e.g. images) into **train**, **validation** and **test** (dataset) folders.

The input folder should have the following format:

```
input/
    class1/
        img1.jpg
        img2.jpg
        ...
    class2/
        imgWhatever.jpg
        ...
    ...
```

In order to give you this:

```
output/
    train/
        class1/
            img1.jpg
            ...
        class2/
            imga.jpg
            ...
    val/
        class1/
            img2.jpg
            ...
        class2/
            imgb.jpg
            ...
    test/
        class1/
            img3.jpg
            ...
        class2/
            imgc.jpg
            ...
```

This should get you started to do some serious deep learning on your data. [Read here](https://stats.stackexchange.com/questions/19048/what-is-the-difference-between-test-set-and-validation-set) why it's a good idea to split your data intro three different sets.

-   Split files into a training set and a validation set (and optionally a test set).
-   Works on any file types.
-   The files get shuffled.
-   A [seed](https://docs.python.org/3/library/random.html#random.seed) makes splits reproducible.
-   Allows randomized [oversampling](https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis) for imbalanced datasets.
-   Optionally group files by prefix.
-   (Should) work on all operating systems.

## Install

This package is Python only and there are no external dependencies.

```bash
pip install split-folders
```

Optionally, you may install [tqdm](https://github.com/tqdm/tqdm) to get get a progress bar when moving files.

```bash
pip install split-folders[full]
```

## Usage

You can use `split-folders` as Python module or as a Command Line Interface (CLI).

If your datasets is balanced (each class has the same number of samples), choose `ratio` otherwise `fixed`.
NB: oversampling is turned off by default.
Oversampling is only applied to the _train_ folder since having duplicates in _val_ or _test_ would be considered cheating.

### Module

```python
import splitfolders

# Split with a ratio.
# To only split into training and validation set, set a tuple to `ratio`, i.e, `(.8, .2)`.
splitfolders.ratio("input_folder", output="output",
    seed=1337, ratio=(.8, .1, .1), group_prefix=None, move=False) # default values

# Split val/test with a fixed number of items, e.g. `(100, 100)`, for each set.
# To only split into training and validation set, use a single number to `fixed`, i.e., `10`.
# Set 3 values, e.g. `(300, 100, 100)`, to limit the number of training values.
splitfolders.fixed("input_folder", output="output",
    seed=1337, fixed=(100, 100), oversample=False, group_prefix=None, move=False) # default values
```

Occasionally, you may have things that comprise more than a single file (e.g. picture (.png) + annotation (.txt)).
`splitfolders` lets you split files into equally-sized groups based on their prefix.
Set `group_prefix` to the length of the group (e.g. `2`).
But now _all_ files should be part of groups.

Set `move=True` if you want to move the files instead of copying.

### CLI

```
Usage:
    splitfolders [--output] [--ratio] [--fixed] [--seed] [--oversample] [--group_prefix] [--move] folder_with_images
Options:
    --output        path to the output folder. defaults to `output`. Get created if non-existent.
    --ratio         the ratio to split. e.g. for train/val/test `.8 .1 .1 --` or for train/val `.8 .2 --`.
    --fixed         set the absolute number of items per validation/test set. The remaining items constitute
                    the training set. e.g. for train/val/test `100 100` or for train/val `100`.
                    Set 3 values, e.g. `300 100 100`, to limit the number of training values.
    --seed          set seed value for shuffling the items. defaults to 1337.
    --oversample    enable oversampling of imbalanced datasets, works only with --fixed.
    --group_prefix  split files into equally-sized groups based on their prefix
    --move          move the files instead of copying
Example:
    splitfolders --ratio .8 .1 .1 -- folder_with_images
```

Because of some [Python quirks](https://github.com/jfilter/split-folders/issues/19) you have to prepend ` --` afer using `--ratio`.

Instead of the command `splitfolders` you can also use `split_folders` or `split-folders`.

## Development

Install and use [poetry](https://python-poetry.org/).

## Contributing

If you have a **question**, found a **bug** or want to propose a new **feature**, have a look at the [issues page](https://github.com/jfilter/split-folders/issues).

**Pull requests** are especially welcomed when they fix bugs or improve the code quality.

## License

MIT


%package help
Summary:	Development documents and examples for split-folders
Provides:	python3-split-folders-doc
%description help
# `split-folders` [![Build Status](https://img.shields.io/github/workflow/status/jfilter/split-folders/Test)](https://github.com/jfilter/split-folders/actions/workflows/test.yml) [![PyPI](https://img.shields.io/pypi/v/split-folders.svg)](https://pypi.org/project/split-folders/) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/split-folders.svg)](https://pypi.org/project/split-folders/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/split-folders)](https://pypistats.org/packages/split-folders)

Split folders with files (e.g. images) into **train**, **validation** and **test** (dataset) folders.

The input folder should have the following format:

```
input/
    class1/
        img1.jpg
        img2.jpg
        ...
    class2/
        imgWhatever.jpg
        ...
    ...
```

In order to give you this:

```
output/
    train/
        class1/
            img1.jpg
            ...
        class2/
            imga.jpg
            ...
    val/
        class1/
            img2.jpg
            ...
        class2/
            imgb.jpg
            ...
    test/
        class1/
            img3.jpg
            ...
        class2/
            imgc.jpg
            ...
```

This should get you started to do some serious deep learning on your data. [Read here](https://stats.stackexchange.com/questions/19048/what-is-the-difference-between-test-set-and-validation-set) why it's a good idea to split your data intro three different sets.

-   Split files into a training set and a validation set (and optionally a test set).
-   Works on any file types.
-   The files get shuffled.
-   A [seed](https://docs.python.org/3/library/random.html#random.seed) makes splits reproducible.
-   Allows randomized [oversampling](https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis) for imbalanced datasets.
-   Optionally group files by prefix.
-   (Should) work on all operating systems.

## Install

This package is Python only and there are no external dependencies.

```bash
pip install split-folders
```

Optionally, you may install [tqdm](https://github.com/tqdm/tqdm) to get get a progress bar when moving files.

```bash
pip install split-folders[full]
```

## Usage

You can use `split-folders` as Python module or as a Command Line Interface (CLI).

If your datasets is balanced (each class has the same number of samples), choose `ratio` otherwise `fixed`.
NB: oversampling is turned off by default.
Oversampling is only applied to the _train_ folder since having duplicates in _val_ or _test_ would be considered cheating.

### Module

```python
import splitfolders

# Split with a ratio.
# To only split into training and validation set, set a tuple to `ratio`, i.e, `(.8, .2)`.
splitfolders.ratio("input_folder", output="output",
    seed=1337, ratio=(.8, .1, .1), group_prefix=None, move=False) # default values

# Split val/test with a fixed number of items, e.g. `(100, 100)`, for each set.
# To only split into training and validation set, use a single number to `fixed`, i.e., `10`.
# Set 3 values, e.g. `(300, 100, 100)`, to limit the number of training values.
splitfolders.fixed("input_folder", output="output",
    seed=1337, fixed=(100, 100), oversample=False, group_prefix=None, move=False) # default values
```

Occasionally, you may have things that comprise more than a single file (e.g. picture (.png) + annotation (.txt)).
`splitfolders` lets you split files into equally-sized groups based on their prefix.
Set `group_prefix` to the length of the group (e.g. `2`).
But now _all_ files should be part of groups.

Set `move=True` if you want to move the files instead of copying.

### CLI

```
Usage:
    splitfolders [--output] [--ratio] [--fixed] [--seed] [--oversample] [--group_prefix] [--move] folder_with_images
Options:
    --output        path to the output folder. defaults to `output`. Get created if non-existent.
    --ratio         the ratio to split. e.g. for train/val/test `.8 .1 .1 --` or for train/val `.8 .2 --`.
    --fixed         set the absolute number of items per validation/test set. The remaining items constitute
                    the training set. e.g. for train/val/test `100 100` or for train/val `100`.
                    Set 3 values, e.g. `300 100 100`, to limit the number of training values.
    --seed          set seed value for shuffling the items. defaults to 1337.
    --oversample    enable oversampling of imbalanced datasets, works only with --fixed.
    --group_prefix  split files into equally-sized groups based on their prefix
    --move          move the files instead of copying
Example:
    splitfolders --ratio .8 .1 .1 -- folder_with_images
```

Because of some [Python quirks](https://github.com/jfilter/split-folders/issues/19) you have to prepend ` --` afer using `--ratio`.

Instead of the command `splitfolders` you can also use `split_folders` or `split-folders`.

## Development

Install and use [poetry](https://python-poetry.org/).

## Contributing

If you have a **question**, found a **bug** or want to propose a new **feature**, have a look at the [issues page](https://github.com/jfilter/split-folders/issues).

**Pull requests** are especially welcomed when they fix bugs or improve the code quality.

## License

MIT


%prep
%autosetup -n split-folders-0.5.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-split-folders -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.1-1
- Package Spec generated