1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
%global _empty_manifest_terminate_build 0
Name: python-spotty
Version: 1.3.3
Release: 1
Summary: Training deep learning models on AWS and GCP instances
License: MIT
URL: https://github.com/spotty-cloud/spotty
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/8d/28/8fcb680613f400e68059d62b45e8fabb2d77caadf3ef40f3153535daab4d/spotty-1.3.3.tar.gz
BuildArch: noarch
Requires: python3-boto3
Requires: python3-google-api-python-client
Requires: python3-google-cloud-storage
Requires: python3-cfn-flip
Requires: python3-schema
Requires: python3-chevron
%description
<img src="https://spotty.cloud/_static/images/logo_740x240.png" width="370" height="120" />
[](https://spotty.cloud)
[](https://pypi.org/project/spotty/)


Spotty drastically simplifies training of deep learning models on [AWS](https://aws.amazon.com/)
and [GCP](https://cloud.google.com/):
- it makes training on GPU instances as simple as training on your local machine
- it automatically manages all necessary cloud resources including images, volumes, snapshots and SSH keys
- it makes your model trainable in the cloud by everyone with a couple of commands
- it uses [tmux](https://en.wikipedia.org/wiki/Tmux) to easily detach remote processes from their terminals
- it saves you up to 70% of the costs by using [AWS Spot Instances](https://aws.amazon.com/ec2/spot/)
and [GCP Preemtible VMs](https://cloud.google.com/preemptible-vms/)
## Documentation
- See the [documentation page](https://spotty.cloud).
- Read [this](https://medium.com/@apls/how-to-train-deep-learning-models-on-aws-spot-instances-using-spotty-8d9e0543d365)
article on Medium for a real-world example.
## Installation
Requirements:
* Python >=3.6
* AWS CLI (see [Installing the AWS Command Line Interface](http://docs.aws.amazon.com/cli/latest/userguide/installing.html))
if you're using AWS
* Google Cloud SDK (see [Installing Google Cloud SDK](https://cloud.google.com/sdk/install))
if you're using GCP
Use [pip](http://www.pip-installer.org/en/latest/) to install or upgrade Spotty:
$ pip install -U spotty
## Get Started
1. Prepare a `spotty.yaml` file and put it to the root directory of your project:
- See the file specification [here](https://spotty.cloud/docs/user-guide/configuration-file.html).
- Read [this](https://medium.com/@apls/how-to-train-deep-learning-models-on-aws-spot-instances-using-spotty-8d9e0543d365)
article for a real-world example.
2. Start an instance:
```bash
$ spotty start
```
It will run a Spot Instance, restore snapshots if any, synchronize the project with the running instance
and start the Docker container with the environment.
3. Train a model or run notebooks.
To connect to the running container via SSH, use the following command:
```bash
$ spotty sh
```
It runs a [tmux](https://github.com/tmux/tmux/wiki) session, so you can always detach this session using
__`Ctrl + b`__, then __`d`__ combination of keys. To be attached to that session later, just use the
`spotty sh` command again.
Also, you can run your custom scripts inside the Docker container using the `spotty run <SCRIPT_NAME>` command. Read more
about custom scripts in the documentation:
[Configuration: "scripts" section](https://spotty.cloud/docs/configuration-file/#scripts-section-optional).
## Contributions
Any feedback or contributions are welcome! Please check out the [guidelines](CONTRIBUTING.md).
## License
[MIT License](LICENSE)
%package -n python3-spotty
Summary: Training deep learning models on AWS and GCP instances
Provides: python-spotty
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-spotty
<img src="https://spotty.cloud/_static/images/logo_740x240.png" width="370" height="120" />
[](https://spotty.cloud)
[](https://pypi.org/project/spotty/)


Spotty drastically simplifies training of deep learning models on [AWS](https://aws.amazon.com/)
and [GCP](https://cloud.google.com/):
- it makes training on GPU instances as simple as training on your local machine
- it automatically manages all necessary cloud resources including images, volumes, snapshots and SSH keys
- it makes your model trainable in the cloud by everyone with a couple of commands
- it uses [tmux](https://en.wikipedia.org/wiki/Tmux) to easily detach remote processes from their terminals
- it saves you up to 70% of the costs by using [AWS Spot Instances](https://aws.amazon.com/ec2/spot/)
and [GCP Preemtible VMs](https://cloud.google.com/preemptible-vms/)
## Documentation
- See the [documentation page](https://spotty.cloud).
- Read [this](https://medium.com/@apls/how-to-train-deep-learning-models-on-aws-spot-instances-using-spotty-8d9e0543d365)
article on Medium for a real-world example.
## Installation
Requirements:
* Python >=3.6
* AWS CLI (see [Installing the AWS Command Line Interface](http://docs.aws.amazon.com/cli/latest/userguide/installing.html))
if you're using AWS
* Google Cloud SDK (see [Installing Google Cloud SDK](https://cloud.google.com/sdk/install))
if you're using GCP
Use [pip](http://www.pip-installer.org/en/latest/) to install or upgrade Spotty:
$ pip install -U spotty
## Get Started
1. Prepare a `spotty.yaml` file and put it to the root directory of your project:
- See the file specification [here](https://spotty.cloud/docs/user-guide/configuration-file.html).
- Read [this](https://medium.com/@apls/how-to-train-deep-learning-models-on-aws-spot-instances-using-spotty-8d9e0543d365)
article for a real-world example.
2. Start an instance:
```bash
$ spotty start
```
It will run a Spot Instance, restore snapshots if any, synchronize the project with the running instance
and start the Docker container with the environment.
3. Train a model or run notebooks.
To connect to the running container via SSH, use the following command:
```bash
$ spotty sh
```
It runs a [tmux](https://github.com/tmux/tmux/wiki) session, so you can always detach this session using
__`Ctrl + b`__, then __`d`__ combination of keys. To be attached to that session later, just use the
`spotty sh` command again.
Also, you can run your custom scripts inside the Docker container using the `spotty run <SCRIPT_NAME>` command. Read more
about custom scripts in the documentation:
[Configuration: "scripts" section](https://spotty.cloud/docs/configuration-file/#scripts-section-optional).
## Contributions
Any feedback or contributions are welcome! Please check out the [guidelines](CONTRIBUTING.md).
## License
[MIT License](LICENSE)
%package help
Summary: Development documents and examples for spotty
Provides: python3-spotty-doc
%description help
<img src="https://spotty.cloud/_static/images/logo_740x240.png" width="370" height="120" />
[](https://spotty.cloud)
[](https://pypi.org/project/spotty/)


Spotty drastically simplifies training of deep learning models on [AWS](https://aws.amazon.com/)
and [GCP](https://cloud.google.com/):
- it makes training on GPU instances as simple as training on your local machine
- it automatically manages all necessary cloud resources including images, volumes, snapshots and SSH keys
- it makes your model trainable in the cloud by everyone with a couple of commands
- it uses [tmux](https://en.wikipedia.org/wiki/Tmux) to easily detach remote processes from their terminals
- it saves you up to 70% of the costs by using [AWS Spot Instances](https://aws.amazon.com/ec2/spot/)
and [GCP Preemtible VMs](https://cloud.google.com/preemptible-vms/)
## Documentation
- See the [documentation page](https://spotty.cloud).
- Read [this](https://medium.com/@apls/how-to-train-deep-learning-models-on-aws-spot-instances-using-spotty-8d9e0543d365)
article on Medium for a real-world example.
## Installation
Requirements:
* Python >=3.6
* AWS CLI (see [Installing the AWS Command Line Interface](http://docs.aws.amazon.com/cli/latest/userguide/installing.html))
if you're using AWS
* Google Cloud SDK (see [Installing Google Cloud SDK](https://cloud.google.com/sdk/install))
if you're using GCP
Use [pip](http://www.pip-installer.org/en/latest/) to install or upgrade Spotty:
$ pip install -U spotty
## Get Started
1. Prepare a `spotty.yaml` file and put it to the root directory of your project:
- See the file specification [here](https://spotty.cloud/docs/user-guide/configuration-file.html).
- Read [this](https://medium.com/@apls/how-to-train-deep-learning-models-on-aws-spot-instances-using-spotty-8d9e0543d365)
article for a real-world example.
2. Start an instance:
```bash
$ spotty start
```
It will run a Spot Instance, restore snapshots if any, synchronize the project with the running instance
and start the Docker container with the environment.
3. Train a model or run notebooks.
To connect to the running container via SSH, use the following command:
```bash
$ spotty sh
```
It runs a [tmux](https://github.com/tmux/tmux/wiki) session, so you can always detach this session using
__`Ctrl + b`__, then __`d`__ combination of keys. To be attached to that session later, just use the
`spotty sh` command again.
Also, you can run your custom scripts inside the Docker container using the `spotty run <SCRIPT_NAME>` command. Read more
about custom scripts in the documentation:
[Configuration: "scripts" section](https://spotty.cloud/docs/configuration-file/#scripts-section-optional).
## Contributions
Any feedback or contributions are welcome! Please check out the [guidelines](CONTRIBUTING.md).
## License
[MIT License](LICENSE)
%prep
%autosetup -n spotty-1.3.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-spotty -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.3-1
- Package Spec generated
|