summaryrefslogtreecommitdiff
path: root/python-spylon-kernel.spec
blob: de24984a210545d9867a21f1f663e09226578fd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
%global _empty_manifest_terminate_build 0
Name:		python-spylon-kernel
Version:	0.4.1
Release:	1
Summary:	Jupyter metakernel for apache spark and scala
License:	BSD 3-clause
URL:		http://github.com/maxpoint/spylon-kernel
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/3b/26/0c1c289ab535489b0e290461b0f2c45a00d2033a50a58a45f6d00c5fb205/spylon-kernel-0.4.1.tar.gz
BuildArch:	noarch


%description
# spylon-kernel
[![Build Status](https://travis-ci.org/maxpoint/spylon-kernel.svg?branch=master)](https://travis-ci.org/maxpoint/spylon-kernel)
[![codecov](https://codecov.io/gh/maxpoint/spylon-kernel/branch/master/graph/badge.svg)](https://codecov.io/gh/maxpoint/spylon-kernel)

A Scala [Jupyter kernel](http://jupyter.readthedocs.io/en/latest/projects/kernels.html) that uses [metakernel](https://github.com/Calysto/metakernel) in combination with [py4j](https://www.py4j.org/).

## Prerequisites

* Apache Spark 2.1.1 compiled for Scala 2.11
* Jupyter Notebook
* Python 3.5+

## Install

You can install the spylon-kernel package using `pip` or `conda`.

```bash
pip install spylon-kernel
# or
conda install -c conda-forge spylon-kernel
```

## Using it as a Scala Kernel

You can use spylon-kernel as Scala kernel for Jupyter Notebook. Do this when you want
to work with Spark in Scala with a bit of Python code mixed in.

Create a kernel spec for Jupyter notebook by running the following command:

```bash
python -m spylon_kernel install
```

Launch `jupyter notebook` and you should see a `spylon-kernel` as an option
in the *New* dropdown menu.

See [the basic example notebook](./examples/basic_example.ipynb) for information
about how to intiialize a Spark session and use it both in Scala and Python.

## Using it as an IPython Magic

You can also use spylon-kernel as a magic in an IPython notebook. Do this when
you want to mix a little bit of Scala into your primarily Python notebook.

```python
from spylon_kernel import register_ipython_magics
register_ipython_magics()
```

```scala
%%scala
val x = 8
x
```

## Using it as a Library

Finally, you can use spylon-kernel as a Python library. Do this when you
want to evaluate a string of Scala code in a Python script or shell.

```python
from spylon_kernel import get_scala_interpreter

interp = get_scala_interpreter()

# Evaluate the result of a scala code block.
interp.interpret("""
    val x = 8
    x
""")

interp.last_result()
```

# Release Process

Push a tag and submit a source dist to PyPI.

```
git commit -m 'REL: 0.2.1' --allow-empty
git tag -a 0.2.1 # and enter the same message as the commit
git push origin master # or send a PR

# if everything builds / tests cleanly, release to pypi
make release
```

Then update https://github.com/conda-forge/spylon-kernel-feedstock.


%package -n python3-spylon-kernel
Summary:	Jupyter metakernel for apache spark and scala
Provides:	python-spylon-kernel
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-spylon-kernel
# spylon-kernel
[![Build Status](https://travis-ci.org/maxpoint/spylon-kernel.svg?branch=master)](https://travis-ci.org/maxpoint/spylon-kernel)
[![codecov](https://codecov.io/gh/maxpoint/spylon-kernel/branch/master/graph/badge.svg)](https://codecov.io/gh/maxpoint/spylon-kernel)

A Scala [Jupyter kernel](http://jupyter.readthedocs.io/en/latest/projects/kernels.html) that uses [metakernel](https://github.com/Calysto/metakernel) in combination with [py4j](https://www.py4j.org/).

## Prerequisites

* Apache Spark 2.1.1 compiled for Scala 2.11
* Jupyter Notebook
* Python 3.5+

## Install

You can install the spylon-kernel package using `pip` or `conda`.

```bash
pip install spylon-kernel
# or
conda install -c conda-forge spylon-kernel
```

## Using it as a Scala Kernel

You can use spylon-kernel as Scala kernel for Jupyter Notebook. Do this when you want
to work with Spark in Scala with a bit of Python code mixed in.

Create a kernel spec for Jupyter notebook by running the following command:

```bash
python -m spylon_kernel install
```

Launch `jupyter notebook` and you should see a `spylon-kernel` as an option
in the *New* dropdown menu.

See [the basic example notebook](./examples/basic_example.ipynb) for information
about how to intiialize a Spark session and use it both in Scala and Python.

## Using it as an IPython Magic

You can also use spylon-kernel as a magic in an IPython notebook. Do this when
you want to mix a little bit of Scala into your primarily Python notebook.

```python
from spylon_kernel import register_ipython_magics
register_ipython_magics()
```

```scala
%%scala
val x = 8
x
```

## Using it as a Library

Finally, you can use spylon-kernel as a Python library. Do this when you
want to evaluate a string of Scala code in a Python script or shell.

```python
from spylon_kernel import get_scala_interpreter

interp = get_scala_interpreter()

# Evaluate the result of a scala code block.
interp.interpret("""
    val x = 8
    x
""")

interp.last_result()
```

# Release Process

Push a tag and submit a source dist to PyPI.

```
git commit -m 'REL: 0.2.1' --allow-empty
git tag -a 0.2.1 # and enter the same message as the commit
git push origin master # or send a PR

# if everything builds / tests cleanly, release to pypi
make release
```

Then update https://github.com/conda-forge/spylon-kernel-feedstock.


%package help
Summary:	Development documents and examples for spylon-kernel
Provides:	python3-spylon-kernel-doc
%description help
# spylon-kernel
[![Build Status](https://travis-ci.org/maxpoint/spylon-kernel.svg?branch=master)](https://travis-ci.org/maxpoint/spylon-kernel)
[![codecov](https://codecov.io/gh/maxpoint/spylon-kernel/branch/master/graph/badge.svg)](https://codecov.io/gh/maxpoint/spylon-kernel)

A Scala [Jupyter kernel](http://jupyter.readthedocs.io/en/latest/projects/kernels.html) that uses [metakernel](https://github.com/Calysto/metakernel) in combination with [py4j](https://www.py4j.org/).

## Prerequisites

* Apache Spark 2.1.1 compiled for Scala 2.11
* Jupyter Notebook
* Python 3.5+

## Install

You can install the spylon-kernel package using `pip` or `conda`.

```bash
pip install spylon-kernel
# or
conda install -c conda-forge spylon-kernel
```

## Using it as a Scala Kernel

You can use spylon-kernel as Scala kernel for Jupyter Notebook. Do this when you want
to work with Spark in Scala with a bit of Python code mixed in.

Create a kernel spec for Jupyter notebook by running the following command:

```bash
python -m spylon_kernel install
```

Launch `jupyter notebook` and you should see a `spylon-kernel` as an option
in the *New* dropdown menu.

See [the basic example notebook](./examples/basic_example.ipynb) for information
about how to intiialize a Spark session and use it both in Scala and Python.

## Using it as an IPython Magic

You can also use spylon-kernel as a magic in an IPython notebook. Do this when
you want to mix a little bit of Scala into your primarily Python notebook.

```python
from spylon_kernel import register_ipython_magics
register_ipython_magics()
```

```scala
%%scala
val x = 8
x
```

## Using it as a Library

Finally, you can use spylon-kernel as a Python library. Do this when you
want to evaluate a string of Scala code in a Python script or shell.

```python
from spylon_kernel import get_scala_interpreter

interp = get_scala_interpreter()

# Evaluate the result of a scala code block.
interp.interpret("""
    val x = 8
    x
""")

interp.last_result()
```

# Release Process

Push a tag and submit a source dist to PyPI.

```
git commit -m 'REL: 0.2.1' --allow-empty
git tag -a 0.2.1 # and enter the same message as the commit
git push origin master # or send a PR

# if everything builds / tests cleanly, release to pypi
make release
```

Then update https://github.com/conda-forge/spylon-kernel-feedstock.


%prep
%autosetup -n spylon-kernel-0.4.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-spylon-kernel -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
- Package Spec generated