summaryrefslogtreecommitdiff
path: root/python-sru.spec
blob: e97c05f312d4fd51a66009512269df939e582d1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
%global _empty_manifest_terminate_build 0
Name:		python-sru
Version:	2.6.0
Release:	1
Summary:	Simple Recurrent Units for Highly Parallelizable Recurrence
License:	MIT
URL:		https://github.com/taolei87/sru
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/40/ca/7537e0ef8c3361402b1787474f0960521d4de82673ab45c1f11909e1c7a1/sru-2.6.0.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-ninja

%description

## News
SRU++, a new SRU variant, is released. [[tech report](https://arxiv.org/pdf/2102.12459.pdf)] [[blog](https://www.asapp.com/blog/reducing-the-high-cost-of-training-nlp-models-with-sru/)]

The experimental code and SRU++ implementation are available on [the dev branch](https://github.com/asappresearch/sru/tree/3.0.0-dev/experiments/srupp_experiments) which will be merged into master later.

## About

**SRU** is a recurrent unit that can run over 10 times faster than cuDNN LSTM, without loss of accuracy tested on many tasks. 
<p align="center">
<img width=620 src="https://raw.githubusercontent.com/taolei87/sru/master/imgs/speed.png"><br>
<i>Average processing time of LSTM, conv2d and SRU, tested on GTX 1070</i><br>
</p>
For example, the figure above presents the processing time of a single mini-batch of 32 samples. SRU achieves 10 to 16 times speed-up compared to LSTM, and operates as fast as (or faster than) word-level convolution using conv2d.

#### Reference:
Simple Recurrent Units for Highly Parallelizable Recurrence [[paper](https://arxiv.org/abs/1709.02755)]
```
@inproceedings{lei2018sru,
  title={Simple Recurrent Units for Highly Parallelizable Recurrence},
  author={Tao Lei and Yu Zhang and Sida I. Wang and Hui Dai and Yoav Artzi},
  booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
  year={2018}
}
```

When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute [[paper](https://arxiv.org/pdf/2102.12459)]
```
@article{lei2021srupp,
  title={When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute},
  author={Tao Lei},
  journal={arXiv preprint arXiv:2102.12459},
  year={2021}
}
```
<br>

## Requirements
 - [PyTorch](http://pytorch.org/) >=1.6 recommended
 - [ninja](https://ninja-build.org/)

Install requirements via `pip install -r requirements.txt`.

<br>

## Installation

#### From source:
SRU can be installed as a regular package via `python setup.py install` or `pip install .`.

#### From PyPi:
`pip install sru`


#### Directly use the source without installation:
Make sure this repo and CUDA library can be found by the system, e.g. 
```
export PYTHONPATH=path_to_repo/sru
export LD_LIBRARY_PATH=/usr/local/cuda/lib64
```

<br>

## Examples
The usage of SRU is similar to `nn.LSTM`. SRU likely requires more stacking layers than LSTM. We recommend starting by 2 layers and use more if necessary (see our report for more experimental details).
```python
import torch
from sru import SRU, SRUCell

# input has length 20, batch size 32 and dimension 128
x = torch.FloatTensor(20, 32, 128).cuda()

input_size, hidden_size = 128, 128

rnn = SRU(input_size, hidden_size,
    num_layers = 2,          # number of stacking RNN layers
    dropout = 0.0,           # dropout applied between RNN layers
    bidirectional = False,   # bidirectional RNN
    layer_norm = False,      # apply layer normalization on the output of each layer
    highway_bias = -2,        # initial bias of highway gate (<= 0)
)
rnn.cuda()

output_states, c_states = rnn(x)      # forward pass

# output_states is (length, batch size, number of directions * hidden size)
# c_states is (layers, batch size, number of directions * hidden size)

```

<br>

## Contributing
Please read and follow the [guidelines](CONTRIBUTING.md).


### Other Implementations

[@musyoku](https://github.com/musyoku) had a very nice [SRU implementaion](https://github.com/musyoku/chainer-sru) in chainer.

[@adrianbg](https://github.com/adrianbg) implemented the first [CPU version](https://github.com/taolei87/sru/pull/42).

<br>






%package -n python3-sru
Summary:	Simple Recurrent Units for Highly Parallelizable Recurrence
Provides:	python-sru
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-sru

## News
SRU++, a new SRU variant, is released. [[tech report](https://arxiv.org/pdf/2102.12459.pdf)] [[blog](https://www.asapp.com/blog/reducing-the-high-cost-of-training-nlp-models-with-sru/)]

The experimental code and SRU++ implementation are available on [the dev branch](https://github.com/asappresearch/sru/tree/3.0.0-dev/experiments/srupp_experiments) which will be merged into master later.

## About

**SRU** is a recurrent unit that can run over 10 times faster than cuDNN LSTM, without loss of accuracy tested on many tasks. 
<p align="center">
<img width=620 src="https://raw.githubusercontent.com/taolei87/sru/master/imgs/speed.png"><br>
<i>Average processing time of LSTM, conv2d and SRU, tested on GTX 1070</i><br>
</p>
For example, the figure above presents the processing time of a single mini-batch of 32 samples. SRU achieves 10 to 16 times speed-up compared to LSTM, and operates as fast as (or faster than) word-level convolution using conv2d.

#### Reference:
Simple Recurrent Units for Highly Parallelizable Recurrence [[paper](https://arxiv.org/abs/1709.02755)]
```
@inproceedings{lei2018sru,
  title={Simple Recurrent Units for Highly Parallelizable Recurrence},
  author={Tao Lei and Yu Zhang and Sida I. Wang and Hui Dai and Yoav Artzi},
  booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
  year={2018}
}
```

When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute [[paper](https://arxiv.org/pdf/2102.12459)]
```
@article{lei2021srupp,
  title={When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute},
  author={Tao Lei},
  journal={arXiv preprint arXiv:2102.12459},
  year={2021}
}
```
<br>

## Requirements
 - [PyTorch](http://pytorch.org/) >=1.6 recommended
 - [ninja](https://ninja-build.org/)

Install requirements via `pip install -r requirements.txt`.

<br>

## Installation

#### From source:
SRU can be installed as a regular package via `python setup.py install` or `pip install .`.

#### From PyPi:
`pip install sru`


#### Directly use the source without installation:
Make sure this repo and CUDA library can be found by the system, e.g. 
```
export PYTHONPATH=path_to_repo/sru
export LD_LIBRARY_PATH=/usr/local/cuda/lib64
```

<br>

## Examples
The usage of SRU is similar to `nn.LSTM`. SRU likely requires more stacking layers than LSTM. We recommend starting by 2 layers and use more if necessary (see our report for more experimental details).
```python
import torch
from sru import SRU, SRUCell

# input has length 20, batch size 32 and dimension 128
x = torch.FloatTensor(20, 32, 128).cuda()

input_size, hidden_size = 128, 128

rnn = SRU(input_size, hidden_size,
    num_layers = 2,          # number of stacking RNN layers
    dropout = 0.0,           # dropout applied between RNN layers
    bidirectional = False,   # bidirectional RNN
    layer_norm = False,      # apply layer normalization on the output of each layer
    highway_bias = -2,        # initial bias of highway gate (<= 0)
)
rnn.cuda()

output_states, c_states = rnn(x)      # forward pass

# output_states is (length, batch size, number of directions * hidden size)
# c_states is (layers, batch size, number of directions * hidden size)

```

<br>

## Contributing
Please read and follow the [guidelines](CONTRIBUTING.md).


### Other Implementations

[@musyoku](https://github.com/musyoku) had a very nice [SRU implementaion](https://github.com/musyoku/chainer-sru) in chainer.

[@adrianbg](https://github.com/adrianbg) implemented the first [CPU version](https://github.com/taolei87/sru/pull/42).

<br>






%package help
Summary:	Development documents and examples for sru
Provides:	python3-sru-doc
%description help

## News
SRU++, a new SRU variant, is released. [[tech report](https://arxiv.org/pdf/2102.12459.pdf)] [[blog](https://www.asapp.com/blog/reducing-the-high-cost-of-training-nlp-models-with-sru/)]

The experimental code and SRU++ implementation are available on [the dev branch](https://github.com/asappresearch/sru/tree/3.0.0-dev/experiments/srupp_experiments) which will be merged into master later.

## About

**SRU** is a recurrent unit that can run over 10 times faster than cuDNN LSTM, without loss of accuracy tested on many tasks. 
<p align="center">
<img width=620 src="https://raw.githubusercontent.com/taolei87/sru/master/imgs/speed.png"><br>
<i>Average processing time of LSTM, conv2d and SRU, tested on GTX 1070</i><br>
</p>
For example, the figure above presents the processing time of a single mini-batch of 32 samples. SRU achieves 10 to 16 times speed-up compared to LSTM, and operates as fast as (or faster than) word-level convolution using conv2d.

#### Reference:
Simple Recurrent Units for Highly Parallelizable Recurrence [[paper](https://arxiv.org/abs/1709.02755)]
```
@inproceedings{lei2018sru,
  title={Simple Recurrent Units for Highly Parallelizable Recurrence},
  author={Tao Lei and Yu Zhang and Sida I. Wang and Hui Dai and Yoav Artzi},
  booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
  year={2018}
}
```

When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute [[paper](https://arxiv.org/pdf/2102.12459)]
```
@article{lei2021srupp,
  title={When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute},
  author={Tao Lei},
  journal={arXiv preprint arXiv:2102.12459},
  year={2021}
}
```
<br>

## Requirements
 - [PyTorch](http://pytorch.org/) >=1.6 recommended
 - [ninja](https://ninja-build.org/)

Install requirements via `pip install -r requirements.txt`.

<br>

## Installation

#### From source:
SRU can be installed as a regular package via `python setup.py install` or `pip install .`.

#### From PyPi:
`pip install sru`


#### Directly use the source without installation:
Make sure this repo and CUDA library can be found by the system, e.g. 
```
export PYTHONPATH=path_to_repo/sru
export LD_LIBRARY_PATH=/usr/local/cuda/lib64
```

<br>

## Examples
The usage of SRU is similar to `nn.LSTM`. SRU likely requires more stacking layers than LSTM. We recommend starting by 2 layers and use more if necessary (see our report for more experimental details).
```python
import torch
from sru import SRU, SRUCell

# input has length 20, batch size 32 and dimension 128
x = torch.FloatTensor(20, 32, 128).cuda()

input_size, hidden_size = 128, 128

rnn = SRU(input_size, hidden_size,
    num_layers = 2,          # number of stacking RNN layers
    dropout = 0.0,           # dropout applied between RNN layers
    bidirectional = False,   # bidirectional RNN
    layer_norm = False,      # apply layer normalization on the output of each layer
    highway_bias = -2,        # initial bias of highway gate (<= 0)
)
rnn.cuda()

output_states, c_states = rnn(x)      # forward pass

# output_states is (length, batch size, number of directions * hidden size)
# c_states is (layers, batch size, number of directions * hidden size)

```

<br>

## Contributing
Please read and follow the [guidelines](CONTRIBUTING.md).


### Other Implementations

[@musyoku](https://github.com/musyoku) had a very nice [SRU implementaion](https://github.com/musyoku/chainer-sru) in chainer.

[@adrianbg](https://github.com/adrianbg) implemented the first [CPU version](https://github.com/taolei87/sru/pull/42).

<br>






%prep
%autosetup -n sru-2.6.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-sru -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.6.0-1
- Package Spec generated