1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
%global _empty_manifest_terminate_build 0
Name: python-ssb-ipython-kernels
Version: 0.3.3
Release: 1
Summary: Jupyter kernels for working with dapla services
License: MIT
URL: https://github.com/statisticsnorway/dapla-ipython-kernels
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c1/50/0dbd3944013356007b66c31ca1102cd26dbe060e7fd02b7699fa4bd1146d/ssb-ipython-kernels-0.3.3.tar.gz
BuildArch: noarch
Requires: python3-ipython
Requires: python3-pyspark
Requires: python3-jupyterhub
Requires: python3-oauthenticator
Requires: python3-requests
Requires: python3-requests-cache
Requires: python3-responses
Requires: python3-ipykernel
Requires: python3-notebook
Requires: python3-tornado
Requires: python3-gcsfs
Requires: python3-pyarrow
Requires: python3-pandas
Requires: python3-google-auth
Requires: python3-google-auth-oauthlib
Requires: python3-ipywidgets
Requires: python3-pyjwt
%description
# dapla-ipython-kernels
Python module for use within Jupyter notebooks. It contains kernel extensions for integrating with Apache Spark,
Google Cloud Storage and custom dapla services.
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
## Getting Started
Install the module from pip:
```bash
# pip
pip install dapla-ipython-kernels
```
Now the module is ready to use with a single import:
```python
import dapla as dp
```
This module is targeted to python kernels in Jupyter, but it may work in any IPython environment.
It also depends on a number of custom services, e.g. [the custom auth service](dapla/jupyterextensions/authextension.py)
To test, simply create any Pandas dataframe. This can be stored in Google Cloud Storage at a specific path:
```python
import pandas as pd
import dapla as dp
data = {
'apples': [3, 2, 0, 1],
'oranges': [0, 3, 7, 2]
}
# Create pandas DataFrame
purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David'])
# Write pandas DataFrame to parquet
dp.write_pandas(purchases, '/testfolder/python/purchases', valuation='INTERNAL', state= 'INPUT')
```
Conversely, parquet files can be read from a path directly into a pandas DataFrame.
```python
import dapla as dp
# Read path into pandas dataframe
purchases = dp.read_pandas('/testfolder/python/purchases')
```
## Other functions
Since the python module integrates with Google Cloud Storage and custom dapla services,
some other functions exist as well:
```python
import dapla as dp
# List path by prefix
dp.show('/testfolder/python')
```
| Path | Timestamp |
| ----------------------------- | ------------- |
| /testfolder/python/purchases | 1593120298095 |
| /testfolder/python/other | 1593157667793 |
```python
import dapla as dp
# Show file details
dp.details('/testfolder/python/purchases')
```
| Size | Name |
| ----- | -------------------------------------- |
| 2908 | 42331105444c9ca0ce049ef6de7160.parquet |
See also the [example notebook](examples/dapla_notebook.ipynb) written for Jupyter.
## Deploy to SSB jupyter
### Release version pypi
Make sure you have a clean master branch.<br>
run `make bump-version-patch` - this will update version and commit to git.<br>
run `git push --tags origin master` - important to have --tags to make it auto deploy to pypi
If everything was ok we should see a new release her: https://pypi.org/project/ssb-ipython-kernels/
### Update jupyter image on staging
* Bump ssb-ipython-kernels in dapla-gcp-jupyter [Dockerfile](https://github.com/statisticsnorway/dapla-gcp-jupyter/blob/master/jupyter/Dockerfile) <br>
* Example of previous [update]( https://github.com/statisticsnorway/dapla-gcp-jupyter/commit/8027dc1cbad15dadb1347fe452c78711463e9f3c) <br>
* Check new tag from build on [azure piplines](https://dev.azure.com/statisticsnorway/Dapla/_build/results?buildId=11202&view=logs&jobId=2143f898-48de-5476-aeb8-70e74f8d7c33&j=667c30d6-a912-540e-a406-35cd05a9f751&t=fb539ba6-e537-5346-19c8-c46f7dd4b185)
* update [platform dev jupyter-kubespawner-config](https://github.com/statisticsnorway/platform-dev/blob/master/flux/staging-bip-app/dapla-spark/jupyter/kubespawner-config.yaml) with tag
* [Example](https://github.com/statisticsnorway/platform-dev/commit/b063b830deb6bc0d6a485d7f08fda473cf340ff6)
For now, we have to delete the running jupyer hub instance to make it use this new config
%package -n python3-ssb-ipython-kernels
Summary: Jupyter kernels for working with dapla services
Provides: python-ssb-ipython-kernels
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ssb-ipython-kernels
# dapla-ipython-kernels
Python module for use within Jupyter notebooks. It contains kernel extensions for integrating with Apache Spark,
Google Cloud Storage and custom dapla services.
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
## Getting Started
Install the module from pip:
```bash
# pip
pip install dapla-ipython-kernels
```
Now the module is ready to use with a single import:
```python
import dapla as dp
```
This module is targeted to python kernels in Jupyter, but it may work in any IPython environment.
It also depends on a number of custom services, e.g. [the custom auth service](dapla/jupyterextensions/authextension.py)
To test, simply create any Pandas dataframe. This can be stored in Google Cloud Storage at a specific path:
```python
import pandas as pd
import dapla as dp
data = {
'apples': [3, 2, 0, 1],
'oranges': [0, 3, 7, 2]
}
# Create pandas DataFrame
purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David'])
# Write pandas DataFrame to parquet
dp.write_pandas(purchases, '/testfolder/python/purchases', valuation='INTERNAL', state= 'INPUT')
```
Conversely, parquet files can be read from a path directly into a pandas DataFrame.
```python
import dapla as dp
# Read path into pandas dataframe
purchases = dp.read_pandas('/testfolder/python/purchases')
```
## Other functions
Since the python module integrates with Google Cloud Storage and custom dapla services,
some other functions exist as well:
```python
import dapla as dp
# List path by prefix
dp.show('/testfolder/python')
```
| Path | Timestamp |
| ----------------------------- | ------------- |
| /testfolder/python/purchases | 1593120298095 |
| /testfolder/python/other | 1593157667793 |
```python
import dapla as dp
# Show file details
dp.details('/testfolder/python/purchases')
```
| Size | Name |
| ----- | -------------------------------------- |
| 2908 | 42331105444c9ca0ce049ef6de7160.parquet |
See also the [example notebook](examples/dapla_notebook.ipynb) written for Jupyter.
## Deploy to SSB jupyter
### Release version pypi
Make sure you have a clean master branch.<br>
run `make bump-version-patch` - this will update version and commit to git.<br>
run `git push --tags origin master` - important to have --tags to make it auto deploy to pypi
If everything was ok we should see a new release her: https://pypi.org/project/ssb-ipython-kernels/
### Update jupyter image on staging
* Bump ssb-ipython-kernels in dapla-gcp-jupyter [Dockerfile](https://github.com/statisticsnorway/dapla-gcp-jupyter/blob/master/jupyter/Dockerfile) <br>
* Example of previous [update]( https://github.com/statisticsnorway/dapla-gcp-jupyter/commit/8027dc1cbad15dadb1347fe452c78711463e9f3c) <br>
* Check new tag from build on [azure piplines](https://dev.azure.com/statisticsnorway/Dapla/_build/results?buildId=11202&view=logs&jobId=2143f898-48de-5476-aeb8-70e74f8d7c33&j=667c30d6-a912-540e-a406-35cd05a9f751&t=fb539ba6-e537-5346-19c8-c46f7dd4b185)
* update [platform dev jupyter-kubespawner-config](https://github.com/statisticsnorway/platform-dev/blob/master/flux/staging-bip-app/dapla-spark/jupyter/kubespawner-config.yaml) with tag
* [Example](https://github.com/statisticsnorway/platform-dev/commit/b063b830deb6bc0d6a485d7f08fda473cf340ff6)
For now, we have to delete the running jupyer hub instance to make it use this new config
%package help
Summary: Development documents and examples for ssb-ipython-kernels
Provides: python3-ssb-ipython-kernels-doc
%description help
# dapla-ipython-kernels
Python module for use within Jupyter notebooks. It contains kernel extensions for integrating with Apache Spark,
Google Cloud Storage and custom dapla services.
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
[](https://pypi.python.org/pypi/ssb-ipython-kernels/)
## Getting Started
Install the module from pip:
```bash
# pip
pip install dapla-ipython-kernels
```
Now the module is ready to use with a single import:
```python
import dapla as dp
```
This module is targeted to python kernels in Jupyter, but it may work in any IPython environment.
It also depends on a number of custom services, e.g. [the custom auth service](dapla/jupyterextensions/authextension.py)
To test, simply create any Pandas dataframe. This can be stored in Google Cloud Storage at a specific path:
```python
import pandas as pd
import dapla as dp
data = {
'apples': [3, 2, 0, 1],
'oranges': [0, 3, 7, 2]
}
# Create pandas DataFrame
purchases = pd.DataFrame(data, index=['June', 'Robert', 'Lily', 'David'])
# Write pandas DataFrame to parquet
dp.write_pandas(purchases, '/testfolder/python/purchases', valuation='INTERNAL', state= 'INPUT')
```
Conversely, parquet files can be read from a path directly into a pandas DataFrame.
```python
import dapla as dp
# Read path into pandas dataframe
purchases = dp.read_pandas('/testfolder/python/purchases')
```
## Other functions
Since the python module integrates with Google Cloud Storage and custom dapla services,
some other functions exist as well:
```python
import dapla as dp
# List path by prefix
dp.show('/testfolder/python')
```
| Path | Timestamp |
| ----------------------------- | ------------- |
| /testfolder/python/purchases | 1593120298095 |
| /testfolder/python/other | 1593157667793 |
```python
import dapla as dp
# Show file details
dp.details('/testfolder/python/purchases')
```
| Size | Name |
| ----- | -------------------------------------- |
| 2908 | 42331105444c9ca0ce049ef6de7160.parquet |
See also the [example notebook](examples/dapla_notebook.ipynb) written for Jupyter.
## Deploy to SSB jupyter
### Release version pypi
Make sure you have a clean master branch.<br>
run `make bump-version-patch` - this will update version and commit to git.<br>
run `git push --tags origin master` - important to have --tags to make it auto deploy to pypi
If everything was ok we should see a new release her: https://pypi.org/project/ssb-ipython-kernels/
### Update jupyter image on staging
* Bump ssb-ipython-kernels in dapla-gcp-jupyter [Dockerfile](https://github.com/statisticsnorway/dapla-gcp-jupyter/blob/master/jupyter/Dockerfile) <br>
* Example of previous [update]( https://github.com/statisticsnorway/dapla-gcp-jupyter/commit/8027dc1cbad15dadb1347fe452c78711463e9f3c) <br>
* Check new tag from build on [azure piplines](https://dev.azure.com/statisticsnorway/Dapla/_build/results?buildId=11202&view=logs&jobId=2143f898-48de-5476-aeb8-70e74f8d7c33&j=667c30d6-a912-540e-a406-35cd05a9f751&t=fb539ba6-e537-5346-19c8-c46f7dd4b185)
* update [platform dev jupyter-kubespawner-config](https://github.com/statisticsnorway/platform-dev/blob/master/flux/staging-bip-app/dapla-spark/jupyter/kubespawner-config.yaml) with tag
* [Example](https://github.com/statisticsnorway/platform-dev/commit/b063b830deb6bc0d6a485d7f08fda473cf340ff6)
For now, we have to delete the running jupyer hub instance to make it use this new config
%prep
%autosetup -n ssb-ipython-kernels-0.3.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ssb-ipython-kernels -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.3-1
- Package Spec generated
|