summaryrefslogtreecommitdiff
path: root/python-stable-baselines.spec
blob: 85f9aea45f9962c9d519e55344e3cf5c72fd62e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
%global _empty_manifest_terminate_build 0
Name:		python-stable-baselines
Version:	2.10.2
Release:	1
Summary:	A fork of OpenAI Baselines, implementations of reinforcement learning algorithms.
License:	MIT
URL:		https://github.com/hill-a/stable-baselines
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ba/e5/b59ee753d93632fd28d15acaf5043e8cd1d14385191f0ab843f277c00a5d/stable_baselines-2.10.2.tar.gz
BuildArch:	noarch

Requires:	python3-gym[atari,classic_control]
Requires:	python3-scipy
Requires:	python3-joblib
Requires:	python3-cloudpickle
Requires:	python3-opencv-python
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-matplotlib
Requires:	python3-sphinx
Requires:	python3-sphinx-autobuild
Requires:	python3-sphinx-rtd-theme
Requires:	python3-mpi4py
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-pytest-env
Requires:	python3-pytest-xdist
Requires:	python3-pytype

%description

**WARNING: This package is in maintenance mode, please use [Stable-Baselines3 (SB3)](https://github.com/DLR-RM/stable-baselines3) for an up-to-date version. You can find a [migration guide](https://stable-baselines3.readthedocs.io/en/master/guide/migration.html) in SB3 documentation.**

[![Build Status](https://travis-ci.com/hill-a/stable-baselines.svg?branch=master)](https://travis-ci.com/hill-a/stable-baselines) [![Documentation Status](https://readthedocs.org/projects/stable-baselines/badge/?version=master)](https://stable-baselines.readthedocs.io/en/master/?badge=master) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/3bcb4cd6d76a4270acb16b5fe6dd9efa)](https://www.codacy.com/app/baselines_janitors/stable-baselines?utm_source=github.com&utm_medium=referral&utm_content=hill-a/stable-baselines&utm_campaign=Badge_Grade) [![Codacy Badge](https://api.codacy.com/project/badge/Coverage/3bcb4cd6d76a4270acb16b5fe6dd9efa)](https://www.codacy.com/app/baselines_janitors/stable-baselines?utm_source=github.com&utm_medium=referral&utm_content=hill-a/stable-baselines&utm_campaign=Badge_Coverage)

# Stable Baselines

Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI [Baselines](https://github.com/openai/baselines/).

These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.

## Main differences with OpenAI Baselines
This toolset is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups:

-   Unified structure for all algorithms
-   PEP8 compliant (unified code style)
-   Documented functions and classes
-   More tests & more code coverage
-   Additional algorithms: SAC and TD3 (+ HER support for DQN, DDPG, SAC and TD3)

## Links

Repository:
https://github.com/hill-a/stable-baselines

Medium article:
https://medium.com/@araffin/df87c4b2fc82

Documentation:
https://stable-baselines.readthedocs.io/en/master/

RL Baselines Zoo:
https://github.com/araffin/rl-baselines-zoo

## Quick example

Most of the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms using Gym.

Here is a quick example of how to train and run PPO2 on a cartpole environment:

```python
import gym

from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2

env = gym.make('CartPole-v1')
# Optional: PPO2 requires a vectorized environment to run
# the env is now wrapped automatically when passing it to the constructor
# env = DummyVecEnv([lambda: env])

model = PPO2(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=10000)

obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)
    env.render()
```

Or just train a model with a one liner if [the environment is registered in Gym](https://github.com/openai/gym/wiki/Environments) and if [the policy is registered](https://stable-baselines.readthedocs.io/en/master/guide/custom_policy.html):

```python
from stable_baselines import PPO2

model = PPO2('MlpPolicy', 'CartPole-v1').learn(10000)
```





%package -n python3-stable-baselines
Summary:	A fork of OpenAI Baselines, implementations of reinforcement learning algorithms.
Provides:	python-stable-baselines
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-stable-baselines

**WARNING: This package is in maintenance mode, please use [Stable-Baselines3 (SB3)](https://github.com/DLR-RM/stable-baselines3) for an up-to-date version. You can find a [migration guide](https://stable-baselines3.readthedocs.io/en/master/guide/migration.html) in SB3 documentation.**

[![Build Status](https://travis-ci.com/hill-a/stable-baselines.svg?branch=master)](https://travis-ci.com/hill-a/stable-baselines) [![Documentation Status](https://readthedocs.org/projects/stable-baselines/badge/?version=master)](https://stable-baselines.readthedocs.io/en/master/?badge=master) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/3bcb4cd6d76a4270acb16b5fe6dd9efa)](https://www.codacy.com/app/baselines_janitors/stable-baselines?utm_source=github.com&utm_medium=referral&utm_content=hill-a/stable-baselines&utm_campaign=Badge_Grade) [![Codacy Badge](https://api.codacy.com/project/badge/Coverage/3bcb4cd6d76a4270acb16b5fe6dd9efa)](https://www.codacy.com/app/baselines_janitors/stable-baselines?utm_source=github.com&utm_medium=referral&utm_content=hill-a/stable-baselines&utm_campaign=Badge_Coverage)

# Stable Baselines

Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI [Baselines](https://github.com/openai/baselines/).

These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.

## Main differences with OpenAI Baselines
This toolset is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups:

-   Unified structure for all algorithms
-   PEP8 compliant (unified code style)
-   Documented functions and classes
-   More tests & more code coverage
-   Additional algorithms: SAC and TD3 (+ HER support for DQN, DDPG, SAC and TD3)

## Links

Repository:
https://github.com/hill-a/stable-baselines

Medium article:
https://medium.com/@araffin/df87c4b2fc82

Documentation:
https://stable-baselines.readthedocs.io/en/master/

RL Baselines Zoo:
https://github.com/araffin/rl-baselines-zoo

## Quick example

Most of the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms using Gym.

Here is a quick example of how to train and run PPO2 on a cartpole environment:

```python
import gym

from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2

env = gym.make('CartPole-v1')
# Optional: PPO2 requires a vectorized environment to run
# the env is now wrapped automatically when passing it to the constructor
# env = DummyVecEnv([lambda: env])

model = PPO2(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=10000)

obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)
    env.render()
```

Or just train a model with a one liner if [the environment is registered in Gym](https://github.com/openai/gym/wiki/Environments) and if [the policy is registered](https://stable-baselines.readthedocs.io/en/master/guide/custom_policy.html):

```python
from stable_baselines import PPO2

model = PPO2('MlpPolicy', 'CartPole-v1').learn(10000)
```





%package help
Summary:	Development documents and examples for stable-baselines
Provides:	python3-stable-baselines-doc
%description help

**WARNING: This package is in maintenance mode, please use [Stable-Baselines3 (SB3)](https://github.com/DLR-RM/stable-baselines3) for an up-to-date version. You can find a [migration guide](https://stable-baselines3.readthedocs.io/en/master/guide/migration.html) in SB3 documentation.**

[![Build Status](https://travis-ci.com/hill-a/stable-baselines.svg?branch=master)](https://travis-ci.com/hill-a/stable-baselines) [![Documentation Status](https://readthedocs.org/projects/stable-baselines/badge/?version=master)](https://stable-baselines.readthedocs.io/en/master/?badge=master) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/3bcb4cd6d76a4270acb16b5fe6dd9efa)](https://www.codacy.com/app/baselines_janitors/stable-baselines?utm_source=github.com&utm_medium=referral&utm_content=hill-a/stable-baselines&utm_campaign=Badge_Grade) [![Codacy Badge](https://api.codacy.com/project/badge/Coverage/3bcb4cd6d76a4270acb16b5fe6dd9efa)](https://www.codacy.com/app/baselines_janitors/stable-baselines?utm_source=github.com&utm_medium=referral&utm_content=hill-a/stable-baselines&utm_campaign=Badge_Coverage)

# Stable Baselines

Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI [Baselines](https://github.com/openai/baselines/).

These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.

## Main differences with OpenAI Baselines
This toolset is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups:

-   Unified structure for all algorithms
-   PEP8 compliant (unified code style)
-   Documented functions and classes
-   More tests & more code coverage
-   Additional algorithms: SAC and TD3 (+ HER support for DQN, DDPG, SAC and TD3)

## Links

Repository:
https://github.com/hill-a/stable-baselines

Medium article:
https://medium.com/@araffin/df87c4b2fc82

Documentation:
https://stable-baselines.readthedocs.io/en/master/

RL Baselines Zoo:
https://github.com/araffin/rl-baselines-zoo

## Quick example

Most of the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms using Gym.

Here is a quick example of how to train and run PPO2 on a cartpole environment:

```python
import gym

from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2

env = gym.make('CartPole-v1')
# Optional: PPO2 requires a vectorized environment to run
# the env is now wrapped automatically when passing it to the constructor
# env = DummyVecEnv([lambda: env])

model = PPO2(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=10000)

obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)
    env.render()
```

Or just train a model with a one liner if [the environment is registered in Gym](https://github.com/openai/gym/wiki/Environments) and if [the policy is registered](https://stable-baselines.readthedocs.io/en/master/guide/custom_policy.html):

```python
from stable_baselines import PPO2

model = PPO2('MlpPolicy', 'CartPole-v1').learn(10000)
```





%prep
%autosetup -n stable-baselines-2.10.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-stable-baselines -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 2.10.2-1
- Package Spec generated