diff options
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-stldecompose.spec | 80 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 82 insertions, 0 deletions
@@ -0,0 +1 @@ +/stldecompose-0.0.5.tar.gz diff --git a/python-stldecompose.spec b/python-stldecompose.spec new file mode 100644 index 0000000..59cd350 --- /dev/null +++ b/python-stldecompose.spec @@ -0,0 +1,80 @@ +%global _empty_manifest_terminate_build 0 +Name: python-stldecompose +Version: 0.0.5 +Release: 1 +Summary: A Python implementation of seasonal trend with Loess (STL) time series decomposition +License: MIT +URL: https://github.com/jrmontag/STLDecompose +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/36/78/04d96ebbacf2c8d0876167c900e248f10440a84cd2e59490044a2944b84e/stldecompose-0.0.5.tar.gz +BuildArch: noarch + +Requires: python3-pandas +Requires: python3-numpy +Requires: python3-scipy +Requires: python3-statsmodels +Requires: python3-matplotlib + +%description +This is a relatively naive Python implementation of a seasonal and trend decomposition using Loess smoothing. Commonly referred to as an "STL decomposition", Cleveland's 1990 paper is the canonical reference. +This implementation is a variation of (and takes inspiration from) the implementation of the ``seasonal_decompose`` method `in statsmodels <http://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.seasonal_decompose.html#statsmodels.tsa.seasonal.seasonal_decompose>`_. In this implementation, the trend component is calculated by substituting a configurable `Loess regression <https://en.wikipedia.org/wiki/Local_regression>`_ for the convolutional method used in ``seasonal_decompose``. It also extends the existing ``DecomposeResult`` from ``statsmodels`` to allow for forecasting based on the calculated decomposition. + +%package -n python3-stldecompose +Summary: A Python implementation of seasonal trend with Loess (STL) time series decomposition +Provides: python-stldecompose +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-stldecompose +This is a relatively naive Python implementation of a seasonal and trend decomposition using Loess smoothing. Commonly referred to as an "STL decomposition", Cleveland's 1990 paper is the canonical reference. +This implementation is a variation of (and takes inspiration from) the implementation of the ``seasonal_decompose`` method `in statsmodels <http://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.seasonal_decompose.html#statsmodels.tsa.seasonal.seasonal_decompose>`_. In this implementation, the trend component is calculated by substituting a configurable `Loess regression <https://en.wikipedia.org/wiki/Local_regression>`_ for the convolutional method used in ``seasonal_decompose``. It also extends the existing ``DecomposeResult`` from ``statsmodels`` to allow for forecasting based on the calculated decomposition. + +%package help +Summary: Development documents and examples for stldecompose +Provides: python3-stldecompose-doc +%description help +This is a relatively naive Python implementation of a seasonal and trend decomposition using Loess smoothing. Commonly referred to as an "STL decomposition", Cleveland's 1990 paper is the canonical reference. +This implementation is a variation of (and takes inspiration from) the implementation of the ``seasonal_decompose`` method `in statsmodels <http://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.seasonal_decompose.html#statsmodels.tsa.seasonal.seasonal_decompose>`_. In this implementation, the trend component is calculated by substituting a configurable `Loess regression <https://en.wikipedia.org/wiki/Local_regression>`_ for the convolutional method used in ``seasonal_decompose``. It also extends the existing ``DecomposeResult`` from ``statsmodels`` to allow for forecasting based on the calculated decomposition. + +%prep +%autosetup -n stldecompose-0.0.5 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-stldecompose -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.5-1 +- Package Spec generated @@ -0,0 +1 @@ +a597e7f07247f72cf22f029ebf81bd34 stldecompose-0.0.5.tar.gz |
