1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
|
%global _empty_manifest_terminate_build 0
Name: python-strsimpy
Version: 0.2.1
Release: 1
Summary: A library implementing different string similarity and distance measures
License: MIT License
URL: https://github.com/luozhouyang/python-string-similarity
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0d/7e/5ccf2edfa1e97154dbf3119fd240b1f5fbe32ad1edd1db5f7a94d3f7a037/strsimpy-0.2.1.tar.gz
BuildArch: noarch
%description
# python-string-similarity

[](https://badge.fury.io/py/strsimpy)
[](https://badge.fury.io/py/strsimpy)
Python3.x implementation of [tdebatty/java-string-similarity](https://github.com/tdebatty/java-string-similarity)
A library implementing different string similarity and distance measures. A dozen of algorithms (including Levenshtein edit distance and sibblings, Jaro-Winkler, Longest Common Subsequence, cosine similarity etc.) are currently implemented. Check the summary table below for the complete list...
- [python-string-similarity](#python-string-similarity)
- [Download](#download)
- [Overview](#overview)
- [Normalized, metric, similarity and distance](#normalized-metric-similarity-and-distance)
- [(Normalized) similarity and distance](#normalized-similarity-and-distance)
- [Metric distances](#metric-distances)
- [Shingles (n-gram) based similarity and distance](#shingles-n-gram-based-similarity-and-distance)
- [Levenshtein](#levenshtein)
- [Normalized Levenshtein](#normalized-levenshtein)
- [Weighted Levenshtein](#weighted-levenshtein)
- [Damerau-Levenshtein](#damerau-levenshtein)
- [Optimal String Alignment](#optimal-string-alignment)
- [Jaro-Winkler](#jaro-winkler)
- [Longest Common Subsequence](#longest-common-subsequence)
- [Metric Longest Common Subsequence](#metric-longest-common-subsequence)
- [N-Gram](#n-gram)
- [Shingle (n-gram) based algorithms](#shingle-n-gram-based-algorithms)
- [Q-Gram](#q-gram)
- [Cosine similarity](#cosine-similarity)
- [Jaccard index](#jaccard-index)
- [Sorensen-Dice coefficient](#sorensen-dice-coefficient)
- [Overlap coefficient (i.e., Szymkiewicz-Simpson)](#overlap-coefficient-ie-szymkiewicz-simpson)
- [Experimental](#experimental)
- [SIFT4](#sift4)
- [Users](#users)
## Download
From pypi:
```bash
# pip install strsim # deprecated, do not use this!
pip install -U strsimpy
```
## Overview
The main characteristics of each implemented algorithm are presented below. The "cost" column gives an estimation of the computational cost to compute the similarity between two strings of length m and n respectively.
| | | Normalized? | Metric? | Type | Cost | Typical usage |
| -------- |------- |------------- |-------- | ------ | ---- | --- |
| [Levenshtein](#levenshtein) |distance | No | Yes | | O(m*n) <sup>1</sup> | |
| [Normalized Levenshtein](#normalized-levenshtein) |distance<br>similarity | Yes | No | | O(m*n) <sup>1</sup> | |
| [Weighted Levenshtein](#weighted-levenshtein) |distance | No | No | | O(m*n) <sup>1</sup> | OCR |
| [Damerau-Levenshtein](#damerau-levenshtein) <sup>3</sup> |distance | No | Yes | | O(m*n) <sup>1</sup> | |
| [Optimal String Alignment](#optimal-string-alignment) <sup>3</sup> |distance | No | No | | O(m*n) <sup>1</sup> | |
| [Jaro-Winkler](#jaro-winkler) |similarity<br>distance | Yes | No | | O(m*n) | typo correction |
| [Longest Common Subsequence](#longest-common-subsequence) |distance | No | No | | O(m*n) <sup>1,2</sup> | diff utility, GIT reconciliation |
| [Metric Longest Common Subsequence](#metric-longest-common-subsequence) |distance | Yes | Yes | | O(m*n) <sup>1,2</sup> | |
| [N-Gram](#n-gram) |distance | Yes | No | | O(m*n) | |
| [Q-Gram](#q-gram) |distance | No | No | Profile | O(m+n) | |
| [Cosine similarity](#cosine-similarity) |similarity<br>distance | Yes | No | Profile | O(m+n) | |
| [Jaccard index](#jaccard-index) |similarity<br>distance | Yes | Yes | Set | O(m+n) | |
| [Sorensen-Dice coefficient](#sorensen-dice-coefficient) |similarity<br>distance | Yes | No | Set | O(m+n) | |
| [Overlap coefficient](#overlap-coefficient-ie-szymkiewicz-simpson) |similarity<br>distance | Yes | No | Set | O(m+n) | |
[1] In this library, Levenshtein edit distance, LCS distance and their sibblings are computed using the **dynamic programming** method, which has a cost O(m.n). For Levenshtein distance, the algorithm is sometimes called **Wagner-Fischer algorithm** ("The string-to-string correction problem", 1974). The original algorithm uses a matrix of size m x n to store the Levenshtein distance between string prefixes.
If the alphabet is finite, it is possible to use the **method of four russians** (Arlazarov et al. "On economic construction of the transitive closure of a directed graph", 1970) to speedup computation. This was published by Masek in 1980 ("A Faster Algorithm Computing String Edit Distances"). This method splits the matrix in blocks of size t x t. Each possible block is precomputed to produce a lookup table. This lookup table can then be used to compute the string similarity (or distance) in O(nm/t). Usually, t is choosen as log(m) if m > n. The resulting computation cost is thus O(mn/log(m)). This method has not been implemented (yet).
[2] In "Length of Maximal Common Subsequences", K.S. Larsen proposed an algorithm that computes the length of LCS in time O(log(m).log(n)). But the algorithm has a memory requirement O(m.n²) and was thus not implemented here.
[3] There are two variants of Damerau-Levenshtein string distance: Damerau-Levenshtein with adjacent transpositions (also sometimes called unrestricted Damerau–Levenshtein distance) and Optimal String Alignment (also sometimes called restricted edit distance). For Optimal String Alignment, no substring can be edited more than once.
## Normalized, metric, similarity and distance
Although the topic might seem simple, a lot of different algorithms exist to measure text similarity or distance. Therefore the library defines some interfaces to categorize them.
### (Normalized) similarity and distance
- StringSimilarity : Implementing algorithms define a similarity between strings (0 means strings are completely different).
- NormalizedStringSimilarity : Implementing algorithms define a similarity between 0.0 and 1.0, like Jaro-Winkler for example.
- StringDistance : Implementing algorithms define a distance between strings (0 means strings are identical), like Levenshtein for example. The maximum distance value depends on the algorithm.
- NormalizedStringDistance : This interface extends StringDistance. For implementing classes, the computed distance value is between 0.0 and 1.0. NormalizedLevenshtein is an example of NormalizedStringDistance.
Generally, algorithms that implement NormalizedStringSimilarity also implement NormalizedStringDistance, and similarity = 1 - distance. But there are a few exceptions, like N-Gram similarity and distance (Kondrak)...
### Metric distances
The MetricStringDistance interface : A few of the distances are actually metric distances, which means that verify the triangle inequality d(x, y) <= d(x,z) + d(z,y). For example, Levenshtein is a metric distance, but NormalizedLevenshtein is not.
A lot of nearest-neighbor search algorithms and indexing structures rely on the triangle inequality.
## Shingles (n-gram) based similarity and distance
A few algorithms work by converting strings into sets of n-grams (sequences of n characters, also sometimes called k-shingles). The similarity or distance between the strings is then the similarity or distance between the sets.
Some of them, like jaccard, consider strings as sets of shingles, and don't consider the number of occurences of each shingle. Others, like cosine similarity, work using what is sometimes called the profile of the strings, which takes into account the number of occurences of each shingle.
For these algorithms, another use case is possible when dealing with large datasets:
1. compute the set or profile representation of all the strings
2. compute the similarity between sets or profiles
## Levenshtein
The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
It is a metric string distance. This implementation uses dynamic programming (Wagner–Fischer algorithm), with only 2 rows of data. The space requirement is thus O(m) and the algorithm runs in O(m.n).
```python
from strsimpy.levenshtein import Levenshtein
levenshtein = Levenshtein()
print(levenshtein.distance('My string', 'My $string'))
print(levenshtein.distance('My string', 'My $string'))
print(levenshtein.distance('My string', 'My $string'))
```
## Normalized Levenshtein
This distance is computed as levenshtein distance divided by the length of the longest string. The resulting value is always in the interval [0.0 1.0] but it is not a metric anymore!
The similarity is computed as 1 - normalized distance.
```python
from strsimpy.normalized_levenshtein import NormalizedLevenshtein
normalized_levenshtein = NormalizedLevenshtein()
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
```
## Weighted Levenshtein
An implementation of Levenshtein that allows to define different weights for different character substitutions.
This algorithm is usually used for optical character recognition (OCR) applications. For OCR, the cost of substituting P and R is lower then the cost of substituting P and M for example because because from and OCR point of view P is similar to R.
It can also be used for keyboard typing auto-correction. Here the cost of substituting E and R is lower for example because these are located next to each other on an AZERTY or QWERTY keyboard. Hence the probability that the user mistyped the characters is higher.
```python
from strsimpy.weighted_levenshtein import WeightedLevenshtein
def insertion_cost(char):
return 1.0
def deletion_cost(char):
return 1.0
def substitution_cost(char_a, char_b):
if char_a == 't' and char_b == 'r':
return 0.5
return 1.0
weighted_levenshtein = WeightedLevenshtein(
substitution_cost_fn=substitution_cost,
insertion_cost_fn=insertion_cost,
deletion_cost_fn=deletion_cost)
print(weighted_levenshtein.distance('String1', 'String2'))
```
## Damerau-Levenshtein
Similar to Levenshtein, Damerau-Levenshtein distance with transposition (also sometimes calls unrestricted Damerau-Levenshtein distance) is the minimum number of operations needed to transform one string into the other, where an operation is defined as an insertion, deletion, or substitution of a single character, or a **transposition of two adjacent characters**.
It does respect triangle inequality, and is thus a metric distance.
This is not to be confused with the optimal string alignment distance, which is an extension where no substring can be edited more than once.
```python
from strsimpy.damerau import Damerau
damerau = Damerau()
print(damerau.distance('ABCDEF', 'ABDCEF'))
print(damerau.distance('ABCDEF', 'BACDFE'))
print(damerau.distance('ABCDEF', 'ABCDE'))
print(damerau.distance('ABCDEF', 'BCDEF'))
print(damerau.distance('ABCDEF', 'ABCGDEF'))
print(damerau.distance('ABCDEF', 'POIU'))
```
Will produce:
```
1.0
2.0
1.0
1.0
1.0
6.0
```
## Optimal String Alignment
The Optimal String Alignment variant of Damerau–Levenshtein (sometimes called the restricted edit distance) computes the number of edit operations needed to make the strings equal under the condition that **no substring is edited more than once**, whereas the true Damerau–Levenshtein presents no such restriction.
The difference from the algorithm for Levenshtein distance is the addition of one recurrence for the transposition operations.
Note that for the optimal string alignment distance, the triangle inequality does not hold and so it is not a true metric.
```python
from strsimpy.optimal_string_alignment import OptimalStringAlignment
optimal_string_alignment = OptimalStringAlignment()
print(optimal_string_alignment.distance('CA', 'ABC'))
```
Will produce:
```
3.0
```
## Jaro-Winkler
Jaro-Winkler is a string edit distance that was developed in the area of record linkage (duplicate detection) (Winkler, 1990). The Jaro–Winkler distance metric is designed and best suited for short strings such as person names, and to detect typos.
Jaro-Winkler computes the similarity between 2 strings, and the returned value lies in the interval [0.0, 1.0].
It is (roughly) a variation of Damerau-Levenshtein, where the substitution of 2 close characters is considered less important then the substitution of 2 characters that a far from each other.
The distance is computed as 1 - Jaro-Winkler similarity.
```python
from strsimpy.jaro_winkler import JaroWinkler
jarowinkler = JaroWinkler()
print(jarowinkler.similarity('My string', 'My tsring'))
print(jarowinkler.similarity('My string', 'My ntrisg'))
```
will produce:
```
0.9740740740740741
0.8962962962962963
```
## Longest Common Subsequence
The longest common subsequence (LCS) problem consists in finding the longest subsequence common to two (or more) sequences. It differs from problems of finding common substrings: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences.
It is used by the diff utility, by Git for reconciling multiple changes, etc.
The LCS distance between strings X (of length n) and Y (of length m) is n + m - 2 |LCS(X, Y)|
min = 0
max = n + m
LCS distance is equivalent to Levenshtein distance when only insertion and deletion is allowed (no substitution), or when the cost of the substitution is the double of the cost of an insertion or deletion.
This class implements the dynamic programming approach, which has a space requirement O(m.n), and computation cost O(m.n).
In "Length of Maximal Common Subsequences", K.S. Larsen proposed an algorithm that computes the length of LCS in time O(log(m).log(n)). But the algorithm has a memory requirement O(m.n²) and was thus not implemented here.
```python
from strsimpy.longest_common_subsequence import LongestCommonSubsequence
lcs = LongestCommonSubsequence()
print(lcs.distance('AGCAT', 'GAC'))
4
print(lcs.length('AGCAT', 'GAC'))
2
print(lcs.distance('AGCAT', 'AGCT'))
1
print(lcs.length('AGCAT', 'AGCT'))
4
```
## Metric Longest Common Subsequence
Distance metric based on Longest Common Subsequence, from the notes "An LCS-based string metric" by Daniel Bakkelund.
http://heim.ifi.uio.no/~danielry/StringMetric.pdf
The distance is computed as 1 - |LCS(s1, s2)| / max(|s1|, |s2|)
```python
from strsimpy.metric_lcs import MetricLCS
metric_lcs = MetricLCS()
s1 = 'ABCDEFG'
s2 = 'ABCDEFHJKL'
# LCS: ABCDEF => length = 6
# longest = s2 => length = 10
# => 1 - 6/10 = 0.4
print(metric_lcs.distance(s1, s2))
# LCS: ABDF => length = 4
# longest = ABDEF => length = 5
# => 1 - 4 / 5 = 0.2
print(metric_lcs.distance('ABDEF', 'ABDIF'))
```
will produce:
```
0.4
0.19999999999999996
```
## N-Gram
Normalized N-Gram distance as defined by Kondrak, "N-Gram Similarity and Distance", String Processing and Information Retrieval, Lecture Notes in Computer Science Volume 3772, 2005, pp 115-126.
http://webdocs.cs.ualberta.ca/~kondrak/papers/spire05.pdf
The algorithm uses affixing with special character '\n' to increase the weight of first characters. The normalization is achieved by dividing the total similarity score the original length of the longest word.
In the paper, Kondrak also defines a similarity measure, which is not implemented (yet).
```python
from strsimpy.ngram import NGram
twogram = NGram(2)
print(twogram.distance('ABCD', 'ABTUIO'))
s1 = 'Adobe CreativeSuite 5 Master Collection from cheap 4zp'
s2 = 'Adobe CreativeSuite 5 Master Collection from cheap d1x'
fourgram = NGram(4)
print(fourgram.distance(s1, s2))
```
## Shingle (n-gram) based algorithms
A few algorithms work by converting strings into sets of n-grams (sequences of n characters, also sometimes called k-shingles). The similarity or distance between the strings is then the similarity or distance between the sets.
The cost for computing these similarities and distances is mainly domnitated by k-shingling (converting the strings into sequences of k characters). Therefore there are typically two use cases for these algorithms:
Directly compute the distance between strings:
```python
from strsimpy.qgram import QGram
qgram = QGram(2)
print(qgram.distance('ABCD', 'ABCE'))
```
Or, for large datasets, pre-compute the profile of all strings. The similarity can then be computed between profiles:
```python
from strsimpy.cosine import Cosine
cosine = Cosine(2)
s0 = 'My first string'
s1 = 'My other string...'
p0 = cosine.get_profile(s0)
p1 = cosine.get_profile(s1)
print(cosine.similarity_profiles(p0, p1))
```
Pay attention, this only works if the same KShingling object is used to parse all input strings !
### Q-Gram
Q-gram distance, as defined by Ukkonen in "Approximate string-matching with q-grams and maximal matches"
http://www.sciencedirect.com/science/article/pii/0304397592901434
The distance between two strings is defined as the L1 norm of the difference of their profiles (the number of occurences of each n-gram): SUM( |V1_i - V2_i| ). Q-gram distance is a lower bound on Levenshtein distance, but can be computed in O(m + n), where Levenshtein requires O(m.n)
### Cosine similarity
The similarity between the two strings is the cosine of the angle between these two vectors representation, and is computed as V1 . V2 / (|V1| * |V2|)
Distance is computed as 1 - cosine similarity.
### Jaccard index
Like Q-Gram distance, the input strings are first converted into sets of n-grams (sequences of n characters, also called k-shingles), but this time the cardinality of each n-gram is not taken into account. Each input string is simply a set of n-grams. The Jaccard index is then computed as |V1 inter V2| / |V1 union V2|.
Distance is computed as 1 - similarity.
Jaccard index is a metric distance.
### Sorensen-Dice coefficient
Similar to Jaccard index, but this time the similarity is computed as 2 * |V1 inter V2| / (|V1| + |V2|).
Distance is computed as 1 - similarity.
### Overlap coefficient (i.e., Szymkiewicz-Simpson)
Very similar to Jaccard and Sorensen-Dice measures, but this time the similarity is computed as |V1 inter V2| / Min(|V1|,|V2|). Tends to yield higher similarity scores compared to the other overlapping coefficients. Always returns the highest similarity score (1) if one given string is the subset of the other.
Distance is computed as 1 - similarity.
## Experimental
### SIFT4
SIFT4 is a general purpose string distance algorithm inspired by JaroWinkler and Longest Common Subsequence. It was developed to produce a distance measure that matches as close as possible to the human perception of string distance. Hence it takes into account elements like character substitution, character distance, longest common subsequence etc. It was developed using experimental testing, and without theoretical background.
```python
from strsimpy import SIFT4
s = SIFT4()
# result: 11.0
s.distance('This is the first string', 'And this is another string') # 11.0
# result: 12.0
s.distance('Lorem ipsum dolor sit amet, consectetur adipiscing elit.', 'Amet Lorm ispum dolor sit amet, consetetur adixxxpiscing elit.', maxoffset=10)
```
## Users
* [StringSimilarity.NET](https://github.com/feature23/StringSimilarity.NET) a .NET port of java-string-similarity
Use java-string-similarity in your project and want it to be mentioned here? Don't hesitate to drop me a line!
%package -n python3-strsimpy
Summary: A library implementing different string similarity and distance measures
Provides: python-strsimpy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-strsimpy
# python-string-similarity

[](https://badge.fury.io/py/strsimpy)
[](https://badge.fury.io/py/strsimpy)
Python3.x implementation of [tdebatty/java-string-similarity](https://github.com/tdebatty/java-string-similarity)
A library implementing different string similarity and distance measures. A dozen of algorithms (including Levenshtein edit distance and sibblings, Jaro-Winkler, Longest Common Subsequence, cosine similarity etc.) are currently implemented. Check the summary table below for the complete list...
- [python-string-similarity](#python-string-similarity)
- [Download](#download)
- [Overview](#overview)
- [Normalized, metric, similarity and distance](#normalized-metric-similarity-and-distance)
- [(Normalized) similarity and distance](#normalized-similarity-and-distance)
- [Metric distances](#metric-distances)
- [Shingles (n-gram) based similarity and distance](#shingles-n-gram-based-similarity-and-distance)
- [Levenshtein](#levenshtein)
- [Normalized Levenshtein](#normalized-levenshtein)
- [Weighted Levenshtein](#weighted-levenshtein)
- [Damerau-Levenshtein](#damerau-levenshtein)
- [Optimal String Alignment](#optimal-string-alignment)
- [Jaro-Winkler](#jaro-winkler)
- [Longest Common Subsequence](#longest-common-subsequence)
- [Metric Longest Common Subsequence](#metric-longest-common-subsequence)
- [N-Gram](#n-gram)
- [Shingle (n-gram) based algorithms](#shingle-n-gram-based-algorithms)
- [Q-Gram](#q-gram)
- [Cosine similarity](#cosine-similarity)
- [Jaccard index](#jaccard-index)
- [Sorensen-Dice coefficient](#sorensen-dice-coefficient)
- [Overlap coefficient (i.e., Szymkiewicz-Simpson)](#overlap-coefficient-ie-szymkiewicz-simpson)
- [Experimental](#experimental)
- [SIFT4](#sift4)
- [Users](#users)
## Download
From pypi:
```bash
# pip install strsim # deprecated, do not use this!
pip install -U strsimpy
```
## Overview
The main characteristics of each implemented algorithm are presented below. The "cost" column gives an estimation of the computational cost to compute the similarity between two strings of length m and n respectively.
| | | Normalized? | Metric? | Type | Cost | Typical usage |
| -------- |------- |------------- |-------- | ------ | ---- | --- |
| [Levenshtein](#levenshtein) |distance | No | Yes | | O(m*n) <sup>1</sup> | |
| [Normalized Levenshtein](#normalized-levenshtein) |distance<br>similarity | Yes | No | | O(m*n) <sup>1</sup> | |
| [Weighted Levenshtein](#weighted-levenshtein) |distance | No | No | | O(m*n) <sup>1</sup> | OCR |
| [Damerau-Levenshtein](#damerau-levenshtein) <sup>3</sup> |distance | No | Yes | | O(m*n) <sup>1</sup> | |
| [Optimal String Alignment](#optimal-string-alignment) <sup>3</sup> |distance | No | No | | O(m*n) <sup>1</sup> | |
| [Jaro-Winkler](#jaro-winkler) |similarity<br>distance | Yes | No | | O(m*n) | typo correction |
| [Longest Common Subsequence](#longest-common-subsequence) |distance | No | No | | O(m*n) <sup>1,2</sup> | diff utility, GIT reconciliation |
| [Metric Longest Common Subsequence](#metric-longest-common-subsequence) |distance | Yes | Yes | | O(m*n) <sup>1,2</sup> | |
| [N-Gram](#n-gram) |distance | Yes | No | | O(m*n) | |
| [Q-Gram](#q-gram) |distance | No | No | Profile | O(m+n) | |
| [Cosine similarity](#cosine-similarity) |similarity<br>distance | Yes | No | Profile | O(m+n) | |
| [Jaccard index](#jaccard-index) |similarity<br>distance | Yes | Yes | Set | O(m+n) | |
| [Sorensen-Dice coefficient](#sorensen-dice-coefficient) |similarity<br>distance | Yes | No | Set | O(m+n) | |
| [Overlap coefficient](#overlap-coefficient-ie-szymkiewicz-simpson) |similarity<br>distance | Yes | No | Set | O(m+n) | |
[1] In this library, Levenshtein edit distance, LCS distance and their sibblings are computed using the **dynamic programming** method, which has a cost O(m.n). For Levenshtein distance, the algorithm is sometimes called **Wagner-Fischer algorithm** ("The string-to-string correction problem", 1974). The original algorithm uses a matrix of size m x n to store the Levenshtein distance between string prefixes.
If the alphabet is finite, it is possible to use the **method of four russians** (Arlazarov et al. "On economic construction of the transitive closure of a directed graph", 1970) to speedup computation. This was published by Masek in 1980 ("A Faster Algorithm Computing String Edit Distances"). This method splits the matrix in blocks of size t x t. Each possible block is precomputed to produce a lookup table. This lookup table can then be used to compute the string similarity (or distance) in O(nm/t). Usually, t is choosen as log(m) if m > n. The resulting computation cost is thus O(mn/log(m)). This method has not been implemented (yet).
[2] In "Length of Maximal Common Subsequences", K.S. Larsen proposed an algorithm that computes the length of LCS in time O(log(m).log(n)). But the algorithm has a memory requirement O(m.n²) and was thus not implemented here.
[3] There are two variants of Damerau-Levenshtein string distance: Damerau-Levenshtein with adjacent transpositions (also sometimes called unrestricted Damerau–Levenshtein distance) and Optimal String Alignment (also sometimes called restricted edit distance). For Optimal String Alignment, no substring can be edited more than once.
## Normalized, metric, similarity and distance
Although the topic might seem simple, a lot of different algorithms exist to measure text similarity or distance. Therefore the library defines some interfaces to categorize them.
### (Normalized) similarity and distance
- StringSimilarity : Implementing algorithms define a similarity between strings (0 means strings are completely different).
- NormalizedStringSimilarity : Implementing algorithms define a similarity between 0.0 and 1.0, like Jaro-Winkler for example.
- StringDistance : Implementing algorithms define a distance between strings (0 means strings are identical), like Levenshtein for example. The maximum distance value depends on the algorithm.
- NormalizedStringDistance : This interface extends StringDistance. For implementing classes, the computed distance value is between 0.0 and 1.0. NormalizedLevenshtein is an example of NormalizedStringDistance.
Generally, algorithms that implement NormalizedStringSimilarity also implement NormalizedStringDistance, and similarity = 1 - distance. But there are a few exceptions, like N-Gram similarity and distance (Kondrak)...
### Metric distances
The MetricStringDistance interface : A few of the distances are actually metric distances, which means that verify the triangle inequality d(x, y) <= d(x,z) + d(z,y). For example, Levenshtein is a metric distance, but NormalizedLevenshtein is not.
A lot of nearest-neighbor search algorithms and indexing structures rely on the triangle inequality.
## Shingles (n-gram) based similarity and distance
A few algorithms work by converting strings into sets of n-grams (sequences of n characters, also sometimes called k-shingles). The similarity or distance between the strings is then the similarity or distance between the sets.
Some of them, like jaccard, consider strings as sets of shingles, and don't consider the number of occurences of each shingle. Others, like cosine similarity, work using what is sometimes called the profile of the strings, which takes into account the number of occurences of each shingle.
For these algorithms, another use case is possible when dealing with large datasets:
1. compute the set or profile representation of all the strings
2. compute the similarity between sets or profiles
## Levenshtein
The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
It is a metric string distance. This implementation uses dynamic programming (Wagner–Fischer algorithm), with only 2 rows of data. The space requirement is thus O(m) and the algorithm runs in O(m.n).
```python
from strsimpy.levenshtein import Levenshtein
levenshtein = Levenshtein()
print(levenshtein.distance('My string', 'My $string'))
print(levenshtein.distance('My string', 'My $string'))
print(levenshtein.distance('My string', 'My $string'))
```
## Normalized Levenshtein
This distance is computed as levenshtein distance divided by the length of the longest string. The resulting value is always in the interval [0.0 1.0] but it is not a metric anymore!
The similarity is computed as 1 - normalized distance.
```python
from strsimpy.normalized_levenshtein import NormalizedLevenshtein
normalized_levenshtein = NormalizedLevenshtein()
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
```
## Weighted Levenshtein
An implementation of Levenshtein that allows to define different weights for different character substitutions.
This algorithm is usually used for optical character recognition (OCR) applications. For OCR, the cost of substituting P and R is lower then the cost of substituting P and M for example because because from and OCR point of view P is similar to R.
It can also be used for keyboard typing auto-correction. Here the cost of substituting E and R is lower for example because these are located next to each other on an AZERTY or QWERTY keyboard. Hence the probability that the user mistyped the characters is higher.
```python
from strsimpy.weighted_levenshtein import WeightedLevenshtein
def insertion_cost(char):
return 1.0
def deletion_cost(char):
return 1.0
def substitution_cost(char_a, char_b):
if char_a == 't' and char_b == 'r':
return 0.5
return 1.0
weighted_levenshtein = WeightedLevenshtein(
substitution_cost_fn=substitution_cost,
insertion_cost_fn=insertion_cost,
deletion_cost_fn=deletion_cost)
print(weighted_levenshtein.distance('String1', 'String2'))
```
## Damerau-Levenshtein
Similar to Levenshtein, Damerau-Levenshtein distance with transposition (also sometimes calls unrestricted Damerau-Levenshtein distance) is the minimum number of operations needed to transform one string into the other, where an operation is defined as an insertion, deletion, or substitution of a single character, or a **transposition of two adjacent characters**.
It does respect triangle inequality, and is thus a metric distance.
This is not to be confused with the optimal string alignment distance, which is an extension where no substring can be edited more than once.
```python
from strsimpy.damerau import Damerau
damerau = Damerau()
print(damerau.distance('ABCDEF', 'ABDCEF'))
print(damerau.distance('ABCDEF', 'BACDFE'))
print(damerau.distance('ABCDEF', 'ABCDE'))
print(damerau.distance('ABCDEF', 'BCDEF'))
print(damerau.distance('ABCDEF', 'ABCGDEF'))
print(damerau.distance('ABCDEF', 'POIU'))
```
Will produce:
```
1.0
2.0
1.0
1.0
1.0
6.0
```
## Optimal String Alignment
The Optimal String Alignment variant of Damerau–Levenshtein (sometimes called the restricted edit distance) computes the number of edit operations needed to make the strings equal under the condition that **no substring is edited more than once**, whereas the true Damerau–Levenshtein presents no such restriction.
The difference from the algorithm for Levenshtein distance is the addition of one recurrence for the transposition operations.
Note that for the optimal string alignment distance, the triangle inequality does not hold and so it is not a true metric.
```python
from strsimpy.optimal_string_alignment import OptimalStringAlignment
optimal_string_alignment = OptimalStringAlignment()
print(optimal_string_alignment.distance('CA', 'ABC'))
```
Will produce:
```
3.0
```
## Jaro-Winkler
Jaro-Winkler is a string edit distance that was developed in the area of record linkage (duplicate detection) (Winkler, 1990). The Jaro–Winkler distance metric is designed and best suited for short strings such as person names, and to detect typos.
Jaro-Winkler computes the similarity between 2 strings, and the returned value lies in the interval [0.0, 1.0].
It is (roughly) a variation of Damerau-Levenshtein, where the substitution of 2 close characters is considered less important then the substitution of 2 characters that a far from each other.
The distance is computed as 1 - Jaro-Winkler similarity.
```python
from strsimpy.jaro_winkler import JaroWinkler
jarowinkler = JaroWinkler()
print(jarowinkler.similarity('My string', 'My tsring'))
print(jarowinkler.similarity('My string', 'My ntrisg'))
```
will produce:
```
0.9740740740740741
0.8962962962962963
```
## Longest Common Subsequence
The longest common subsequence (LCS) problem consists in finding the longest subsequence common to two (or more) sequences. It differs from problems of finding common substrings: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences.
It is used by the diff utility, by Git for reconciling multiple changes, etc.
The LCS distance between strings X (of length n) and Y (of length m) is n + m - 2 |LCS(X, Y)|
min = 0
max = n + m
LCS distance is equivalent to Levenshtein distance when only insertion and deletion is allowed (no substitution), or when the cost of the substitution is the double of the cost of an insertion or deletion.
This class implements the dynamic programming approach, which has a space requirement O(m.n), and computation cost O(m.n).
In "Length of Maximal Common Subsequences", K.S. Larsen proposed an algorithm that computes the length of LCS in time O(log(m).log(n)). But the algorithm has a memory requirement O(m.n²) and was thus not implemented here.
```python
from strsimpy.longest_common_subsequence import LongestCommonSubsequence
lcs = LongestCommonSubsequence()
print(lcs.distance('AGCAT', 'GAC'))
4
print(lcs.length('AGCAT', 'GAC'))
2
print(lcs.distance('AGCAT', 'AGCT'))
1
print(lcs.length('AGCAT', 'AGCT'))
4
```
## Metric Longest Common Subsequence
Distance metric based on Longest Common Subsequence, from the notes "An LCS-based string metric" by Daniel Bakkelund.
http://heim.ifi.uio.no/~danielry/StringMetric.pdf
The distance is computed as 1 - |LCS(s1, s2)| / max(|s1|, |s2|)
```python
from strsimpy.metric_lcs import MetricLCS
metric_lcs = MetricLCS()
s1 = 'ABCDEFG'
s2 = 'ABCDEFHJKL'
# LCS: ABCDEF => length = 6
# longest = s2 => length = 10
# => 1 - 6/10 = 0.4
print(metric_lcs.distance(s1, s2))
# LCS: ABDF => length = 4
# longest = ABDEF => length = 5
# => 1 - 4 / 5 = 0.2
print(metric_lcs.distance('ABDEF', 'ABDIF'))
```
will produce:
```
0.4
0.19999999999999996
```
## N-Gram
Normalized N-Gram distance as defined by Kondrak, "N-Gram Similarity and Distance", String Processing and Information Retrieval, Lecture Notes in Computer Science Volume 3772, 2005, pp 115-126.
http://webdocs.cs.ualberta.ca/~kondrak/papers/spire05.pdf
The algorithm uses affixing with special character '\n' to increase the weight of first characters. The normalization is achieved by dividing the total similarity score the original length of the longest word.
In the paper, Kondrak also defines a similarity measure, which is not implemented (yet).
```python
from strsimpy.ngram import NGram
twogram = NGram(2)
print(twogram.distance('ABCD', 'ABTUIO'))
s1 = 'Adobe CreativeSuite 5 Master Collection from cheap 4zp'
s2 = 'Adobe CreativeSuite 5 Master Collection from cheap d1x'
fourgram = NGram(4)
print(fourgram.distance(s1, s2))
```
## Shingle (n-gram) based algorithms
A few algorithms work by converting strings into sets of n-grams (sequences of n characters, also sometimes called k-shingles). The similarity or distance between the strings is then the similarity or distance between the sets.
The cost for computing these similarities and distances is mainly domnitated by k-shingling (converting the strings into sequences of k characters). Therefore there are typically two use cases for these algorithms:
Directly compute the distance between strings:
```python
from strsimpy.qgram import QGram
qgram = QGram(2)
print(qgram.distance('ABCD', 'ABCE'))
```
Or, for large datasets, pre-compute the profile of all strings. The similarity can then be computed between profiles:
```python
from strsimpy.cosine import Cosine
cosine = Cosine(2)
s0 = 'My first string'
s1 = 'My other string...'
p0 = cosine.get_profile(s0)
p1 = cosine.get_profile(s1)
print(cosine.similarity_profiles(p0, p1))
```
Pay attention, this only works if the same KShingling object is used to parse all input strings !
### Q-Gram
Q-gram distance, as defined by Ukkonen in "Approximate string-matching with q-grams and maximal matches"
http://www.sciencedirect.com/science/article/pii/0304397592901434
The distance between two strings is defined as the L1 norm of the difference of their profiles (the number of occurences of each n-gram): SUM( |V1_i - V2_i| ). Q-gram distance is a lower bound on Levenshtein distance, but can be computed in O(m + n), where Levenshtein requires O(m.n)
### Cosine similarity
The similarity between the two strings is the cosine of the angle between these two vectors representation, and is computed as V1 . V2 / (|V1| * |V2|)
Distance is computed as 1 - cosine similarity.
### Jaccard index
Like Q-Gram distance, the input strings are first converted into sets of n-grams (sequences of n characters, also called k-shingles), but this time the cardinality of each n-gram is not taken into account. Each input string is simply a set of n-grams. The Jaccard index is then computed as |V1 inter V2| / |V1 union V2|.
Distance is computed as 1 - similarity.
Jaccard index is a metric distance.
### Sorensen-Dice coefficient
Similar to Jaccard index, but this time the similarity is computed as 2 * |V1 inter V2| / (|V1| + |V2|).
Distance is computed as 1 - similarity.
### Overlap coefficient (i.e., Szymkiewicz-Simpson)
Very similar to Jaccard and Sorensen-Dice measures, but this time the similarity is computed as |V1 inter V2| / Min(|V1|,|V2|). Tends to yield higher similarity scores compared to the other overlapping coefficients. Always returns the highest similarity score (1) if one given string is the subset of the other.
Distance is computed as 1 - similarity.
## Experimental
### SIFT4
SIFT4 is a general purpose string distance algorithm inspired by JaroWinkler and Longest Common Subsequence. It was developed to produce a distance measure that matches as close as possible to the human perception of string distance. Hence it takes into account elements like character substitution, character distance, longest common subsequence etc. It was developed using experimental testing, and without theoretical background.
```python
from strsimpy import SIFT4
s = SIFT4()
# result: 11.0
s.distance('This is the first string', 'And this is another string') # 11.0
# result: 12.0
s.distance('Lorem ipsum dolor sit amet, consectetur adipiscing elit.', 'Amet Lorm ispum dolor sit amet, consetetur adixxxpiscing elit.', maxoffset=10)
```
## Users
* [StringSimilarity.NET](https://github.com/feature23/StringSimilarity.NET) a .NET port of java-string-similarity
Use java-string-similarity in your project and want it to be mentioned here? Don't hesitate to drop me a line!
%package help
Summary: Development documents and examples for strsimpy
Provides: python3-strsimpy-doc
%description help
# python-string-similarity

[](https://badge.fury.io/py/strsimpy)
[](https://badge.fury.io/py/strsimpy)
Python3.x implementation of [tdebatty/java-string-similarity](https://github.com/tdebatty/java-string-similarity)
A library implementing different string similarity and distance measures. A dozen of algorithms (including Levenshtein edit distance and sibblings, Jaro-Winkler, Longest Common Subsequence, cosine similarity etc.) are currently implemented. Check the summary table below for the complete list...
- [python-string-similarity](#python-string-similarity)
- [Download](#download)
- [Overview](#overview)
- [Normalized, metric, similarity and distance](#normalized-metric-similarity-and-distance)
- [(Normalized) similarity and distance](#normalized-similarity-and-distance)
- [Metric distances](#metric-distances)
- [Shingles (n-gram) based similarity and distance](#shingles-n-gram-based-similarity-and-distance)
- [Levenshtein](#levenshtein)
- [Normalized Levenshtein](#normalized-levenshtein)
- [Weighted Levenshtein](#weighted-levenshtein)
- [Damerau-Levenshtein](#damerau-levenshtein)
- [Optimal String Alignment](#optimal-string-alignment)
- [Jaro-Winkler](#jaro-winkler)
- [Longest Common Subsequence](#longest-common-subsequence)
- [Metric Longest Common Subsequence](#metric-longest-common-subsequence)
- [N-Gram](#n-gram)
- [Shingle (n-gram) based algorithms](#shingle-n-gram-based-algorithms)
- [Q-Gram](#q-gram)
- [Cosine similarity](#cosine-similarity)
- [Jaccard index](#jaccard-index)
- [Sorensen-Dice coefficient](#sorensen-dice-coefficient)
- [Overlap coefficient (i.e., Szymkiewicz-Simpson)](#overlap-coefficient-ie-szymkiewicz-simpson)
- [Experimental](#experimental)
- [SIFT4](#sift4)
- [Users](#users)
## Download
From pypi:
```bash
# pip install strsim # deprecated, do not use this!
pip install -U strsimpy
```
## Overview
The main characteristics of each implemented algorithm are presented below. The "cost" column gives an estimation of the computational cost to compute the similarity between two strings of length m and n respectively.
| | | Normalized? | Metric? | Type | Cost | Typical usage |
| -------- |------- |------------- |-------- | ------ | ---- | --- |
| [Levenshtein](#levenshtein) |distance | No | Yes | | O(m*n) <sup>1</sup> | |
| [Normalized Levenshtein](#normalized-levenshtein) |distance<br>similarity | Yes | No | | O(m*n) <sup>1</sup> | |
| [Weighted Levenshtein](#weighted-levenshtein) |distance | No | No | | O(m*n) <sup>1</sup> | OCR |
| [Damerau-Levenshtein](#damerau-levenshtein) <sup>3</sup> |distance | No | Yes | | O(m*n) <sup>1</sup> | |
| [Optimal String Alignment](#optimal-string-alignment) <sup>3</sup> |distance | No | No | | O(m*n) <sup>1</sup> | |
| [Jaro-Winkler](#jaro-winkler) |similarity<br>distance | Yes | No | | O(m*n) | typo correction |
| [Longest Common Subsequence](#longest-common-subsequence) |distance | No | No | | O(m*n) <sup>1,2</sup> | diff utility, GIT reconciliation |
| [Metric Longest Common Subsequence](#metric-longest-common-subsequence) |distance | Yes | Yes | | O(m*n) <sup>1,2</sup> | |
| [N-Gram](#n-gram) |distance | Yes | No | | O(m*n) | |
| [Q-Gram](#q-gram) |distance | No | No | Profile | O(m+n) | |
| [Cosine similarity](#cosine-similarity) |similarity<br>distance | Yes | No | Profile | O(m+n) | |
| [Jaccard index](#jaccard-index) |similarity<br>distance | Yes | Yes | Set | O(m+n) | |
| [Sorensen-Dice coefficient](#sorensen-dice-coefficient) |similarity<br>distance | Yes | No | Set | O(m+n) | |
| [Overlap coefficient](#overlap-coefficient-ie-szymkiewicz-simpson) |similarity<br>distance | Yes | No | Set | O(m+n) | |
[1] In this library, Levenshtein edit distance, LCS distance and their sibblings are computed using the **dynamic programming** method, which has a cost O(m.n). For Levenshtein distance, the algorithm is sometimes called **Wagner-Fischer algorithm** ("The string-to-string correction problem", 1974). The original algorithm uses a matrix of size m x n to store the Levenshtein distance between string prefixes.
If the alphabet is finite, it is possible to use the **method of four russians** (Arlazarov et al. "On economic construction of the transitive closure of a directed graph", 1970) to speedup computation. This was published by Masek in 1980 ("A Faster Algorithm Computing String Edit Distances"). This method splits the matrix in blocks of size t x t. Each possible block is precomputed to produce a lookup table. This lookup table can then be used to compute the string similarity (or distance) in O(nm/t). Usually, t is choosen as log(m) if m > n. The resulting computation cost is thus O(mn/log(m)). This method has not been implemented (yet).
[2] In "Length of Maximal Common Subsequences", K.S. Larsen proposed an algorithm that computes the length of LCS in time O(log(m).log(n)). But the algorithm has a memory requirement O(m.n²) and was thus not implemented here.
[3] There are two variants of Damerau-Levenshtein string distance: Damerau-Levenshtein with adjacent transpositions (also sometimes called unrestricted Damerau–Levenshtein distance) and Optimal String Alignment (also sometimes called restricted edit distance). For Optimal String Alignment, no substring can be edited more than once.
## Normalized, metric, similarity and distance
Although the topic might seem simple, a lot of different algorithms exist to measure text similarity or distance. Therefore the library defines some interfaces to categorize them.
### (Normalized) similarity and distance
- StringSimilarity : Implementing algorithms define a similarity between strings (0 means strings are completely different).
- NormalizedStringSimilarity : Implementing algorithms define a similarity between 0.0 and 1.0, like Jaro-Winkler for example.
- StringDistance : Implementing algorithms define a distance between strings (0 means strings are identical), like Levenshtein for example. The maximum distance value depends on the algorithm.
- NormalizedStringDistance : This interface extends StringDistance. For implementing classes, the computed distance value is between 0.0 and 1.0. NormalizedLevenshtein is an example of NormalizedStringDistance.
Generally, algorithms that implement NormalizedStringSimilarity also implement NormalizedStringDistance, and similarity = 1 - distance. But there are a few exceptions, like N-Gram similarity and distance (Kondrak)...
### Metric distances
The MetricStringDistance interface : A few of the distances are actually metric distances, which means that verify the triangle inequality d(x, y) <= d(x,z) + d(z,y). For example, Levenshtein is a metric distance, but NormalizedLevenshtein is not.
A lot of nearest-neighbor search algorithms and indexing structures rely on the triangle inequality.
## Shingles (n-gram) based similarity and distance
A few algorithms work by converting strings into sets of n-grams (sequences of n characters, also sometimes called k-shingles). The similarity or distance between the strings is then the similarity or distance between the sets.
Some of them, like jaccard, consider strings as sets of shingles, and don't consider the number of occurences of each shingle. Others, like cosine similarity, work using what is sometimes called the profile of the strings, which takes into account the number of occurences of each shingle.
For these algorithms, another use case is possible when dealing with large datasets:
1. compute the set or profile representation of all the strings
2. compute the similarity between sets or profiles
## Levenshtein
The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
It is a metric string distance. This implementation uses dynamic programming (Wagner–Fischer algorithm), with only 2 rows of data. The space requirement is thus O(m) and the algorithm runs in O(m.n).
```python
from strsimpy.levenshtein import Levenshtein
levenshtein = Levenshtein()
print(levenshtein.distance('My string', 'My $string'))
print(levenshtein.distance('My string', 'My $string'))
print(levenshtein.distance('My string', 'My $string'))
```
## Normalized Levenshtein
This distance is computed as levenshtein distance divided by the length of the longest string. The resulting value is always in the interval [0.0 1.0] but it is not a metric anymore!
The similarity is computed as 1 - normalized distance.
```python
from strsimpy.normalized_levenshtein import NormalizedLevenshtein
normalized_levenshtein = NormalizedLevenshtein()
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.distance('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
print(normalized_levenshtein.similarity('My string', 'My $string'))
```
## Weighted Levenshtein
An implementation of Levenshtein that allows to define different weights for different character substitutions.
This algorithm is usually used for optical character recognition (OCR) applications. For OCR, the cost of substituting P and R is lower then the cost of substituting P and M for example because because from and OCR point of view P is similar to R.
It can also be used for keyboard typing auto-correction. Here the cost of substituting E and R is lower for example because these are located next to each other on an AZERTY or QWERTY keyboard. Hence the probability that the user mistyped the characters is higher.
```python
from strsimpy.weighted_levenshtein import WeightedLevenshtein
def insertion_cost(char):
return 1.0
def deletion_cost(char):
return 1.0
def substitution_cost(char_a, char_b):
if char_a == 't' and char_b == 'r':
return 0.5
return 1.0
weighted_levenshtein = WeightedLevenshtein(
substitution_cost_fn=substitution_cost,
insertion_cost_fn=insertion_cost,
deletion_cost_fn=deletion_cost)
print(weighted_levenshtein.distance('String1', 'String2'))
```
## Damerau-Levenshtein
Similar to Levenshtein, Damerau-Levenshtein distance with transposition (also sometimes calls unrestricted Damerau-Levenshtein distance) is the minimum number of operations needed to transform one string into the other, where an operation is defined as an insertion, deletion, or substitution of a single character, or a **transposition of two adjacent characters**.
It does respect triangle inequality, and is thus a metric distance.
This is not to be confused with the optimal string alignment distance, which is an extension where no substring can be edited more than once.
```python
from strsimpy.damerau import Damerau
damerau = Damerau()
print(damerau.distance('ABCDEF', 'ABDCEF'))
print(damerau.distance('ABCDEF', 'BACDFE'))
print(damerau.distance('ABCDEF', 'ABCDE'))
print(damerau.distance('ABCDEF', 'BCDEF'))
print(damerau.distance('ABCDEF', 'ABCGDEF'))
print(damerau.distance('ABCDEF', 'POIU'))
```
Will produce:
```
1.0
2.0
1.0
1.0
1.0
6.0
```
## Optimal String Alignment
The Optimal String Alignment variant of Damerau–Levenshtein (sometimes called the restricted edit distance) computes the number of edit operations needed to make the strings equal under the condition that **no substring is edited more than once**, whereas the true Damerau–Levenshtein presents no such restriction.
The difference from the algorithm for Levenshtein distance is the addition of one recurrence for the transposition operations.
Note that for the optimal string alignment distance, the triangle inequality does not hold and so it is not a true metric.
```python
from strsimpy.optimal_string_alignment import OptimalStringAlignment
optimal_string_alignment = OptimalStringAlignment()
print(optimal_string_alignment.distance('CA', 'ABC'))
```
Will produce:
```
3.0
```
## Jaro-Winkler
Jaro-Winkler is a string edit distance that was developed in the area of record linkage (duplicate detection) (Winkler, 1990). The Jaro–Winkler distance metric is designed and best suited for short strings such as person names, and to detect typos.
Jaro-Winkler computes the similarity between 2 strings, and the returned value lies in the interval [0.0, 1.0].
It is (roughly) a variation of Damerau-Levenshtein, where the substitution of 2 close characters is considered less important then the substitution of 2 characters that a far from each other.
The distance is computed as 1 - Jaro-Winkler similarity.
```python
from strsimpy.jaro_winkler import JaroWinkler
jarowinkler = JaroWinkler()
print(jarowinkler.similarity('My string', 'My tsring'))
print(jarowinkler.similarity('My string', 'My ntrisg'))
```
will produce:
```
0.9740740740740741
0.8962962962962963
```
## Longest Common Subsequence
The longest common subsequence (LCS) problem consists in finding the longest subsequence common to two (or more) sequences. It differs from problems of finding common substrings: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences.
It is used by the diff utility, by Git for reconciling multiple changes, etc.
The LCS distance between strings X (of length n) and Y (of length m) is n + m - 2 |LCS(X, Y)|
min = 0
max = n + m
LCS distance is equivalent to Levenshtein distance when only insertion and deletion is allowed (no substitution), or when the cost of the substitution is the double of the cost of an insertion or deletion.
This class implements the dynamic programming approach, which has a space requirement O(m.n), and computation cost O(m.n).
In "Length of Maximal Common Subsequences", K.S. Larsen proposed an algorithm that computes the length of LCS in time O(log(m).log(n)). But the algorithm has a memory requirement O(m.n²) and was thus not implemented here.
```python
from strsimpy.longest_common_subsequence import LongestCommonSubsequence
lcs = LongestCommonSubsequence()
print(lcs.distance('AGCAT', 'GAC'))
4
print(lcs.length('AGCAT', 'GAC'))
2
print(lcs.distance('AGCAT', 'AGCT'))
1
print(lcs.length('AGCAT', 'AGCT'))
4
```
## Metric Longest Common Subsequence
Distance metric based on Longest Common Subsequence, from the notes "An LCS-based string metric" by Daniel Bakkelund.
http://heim.ifi.uio.no/~danielry/StringMetric.pdf
The distance is computed as 1 - |LCS(s1, s2)| / max(|s1|, |s2|)
```python
from strsimpy.metric_lcs import MetricLCS
metric_lcs = MetricLCS()
s1 = 'ABCDEFG'
s2 = 'ABCDEFHJKL'
# LCS: ABCDEF => length = 6
# longest = s2 => length = 10
# => 1 - 6/10 = 0.4
print(metric_lcs.distance(s1, s2))
# LCS: ABDF => length = 4
# longest = ABDEF => length = 5
# => 1 - 4 / 5 = 0.2
print(metric_lcs.distance('ABDEF', 'ABDIF'))
```
will produce:
```
0.4
0.19999999999999996
```
## N-Gram
Normalized N-Gram distance as defined by Kondrak, "N-Gram Similarity and Distance", String Processing and Information Retrieval, Lecture Notes in Computer Science Volume 3772, 2005, pp 115-126.
http://webdocs.cs.ualberta.ca/~kondrak/papers/spire05.pdf
The algorithm uses affixing with special character '\n' to increase the weight of first characters. The normalization is achieved by dividing the total similarity score the original length of the longest word.
In the paper, Kondrak also defines a similarity measure, which is not implemented (yet).
```python
from strsimpy.ngram import NGram
twogram = NGram(2)
print(twogram.distance('ABCD', 'ABTUIO'))
s1 = 'Adobe CreativeSuite 5 Master Collection from cheap 4zp'
s2 = 'Adobe CreativeSuite 5 Master Collection from cheap d1x'
fourgram = NGram(4)
print(fourgram.distance(s1, s2))
```
## Shingle (n-gram) based algorithms
A few algorithms work by converting strings into sets of n-grams (sequences of n characters, also sometimes called k-shingles). The similarity or distance between the strings is then the similarity or distance between the sets.
The cost for computing these similarities and distances is mainly domnitated by k-shingling (converting the strings into sequences of k characters). Therefore there are typically two use cases for these algorithms:
Directly compute the distance between strings:
```python
from strsimpy.qgram import QGram
qgram = QGram(2)
print(qgram.distance('ABCD', 'ABCE'))
```
Or, for large datasets, pre-compute the profile of all strings. The similarity can then be computed between profiles:
```python
from strsimpy.cosine import Cosine
cosine = Cosine(2)
s0 = 'My first string'
s1 = 'My other string...'
p0 = cosine.get_profile(s0)
p1 = cosine.get_profile(s1)
print(cosine.similarity_profiles(p0, p1))
```
Pay attention, this only works if the same KShingling object is used to parse all input strings !
### Q-Gram
Q-gram distance, as defined by Ukkonen in "Approximate string-matching with q-grams and maximal matches"
http://www.sciencedirect.com/science/article/pii/0304397592901434
The distance between two strings is defined as the L1 norm of the difference of their profiles (the number of occurences of each n-gram): SUM( |V1_i - V2_i| ). Q-gram distance is a lower bound on Levenshtein distance, but can be computed in O(m + n), where Levenshtein requires O(m.n)
### Cosine similarity
The similarity between the two strings is the cosine of the angle between these two vectors representation, and is computed as V1 . V2 / (|V1| * |V2|)
Distance is computed as 1 - cosine similarity.
### Jaccard index
Like Q-Gram distance, the input strings are first converted into sets of n-grams (sequences of n characters, also called k-shingles), but this time the cardinality of each n-gram is not taken into account. Each input string is simply a set of n-grams. The Jaccard index is then computed as |V1 inter V2| / |V1 union V2|.
Distance is computed as 1 - similarity.
Jaccard index is a metric distance.
### Sorensen-Dice coefficient
Similar to Jaccard index, but this time the similarity is computed as 2 * |V1 inter V2| / (|V1| + |V2|).
Distance is computed as 1 - similarity.
### Overlap coefficient (i.e., Szymkiewicz-Simpson)
Very similar to Jaccard and Sorensen-Dice measures, but this time the similarity is computed as |V1 inter V2| / Min(|V1|,|V2|). Tends to yield higher similarity scores compared to the other overlapping coefficients. Always returns the highest similarity score (1) if one given string is the subset of the other.
Distance is computed as 1 - similarity.
## Experimental
### SIFT4
SIFT4 is a general purpose string distance algorithm inspired by JaroWinkler and Longest Common Subsequence. It was developed to produce a distance measure that matches as close as possible to the human perception of string distance. Hence it takes into account elements like character substitution, character distance, longest common subsequence etc. It was developed using experimental testing, and without theoretical background.
```python
from strsimpy import SIFT4
s = SIFT4()
# result: 11.0
s.distance('This is the first string', 'And this is another string') # 11.0
# result: 12.0
s.distance('Lorem ipsum dolor sit amet, consectetur adipiscing elit.', 'Amet Lorm ispum dolor sit amet, consetetur adixxxpiscing elit.', maxoffset=10)
```
## Users
* [StringSimilarity.NET](https://github.com/feature23/StringSimilarity.NET) a .NET port of java-string-similarity
Use java-string-similarity in your project and want it to be mentioned here? Don't hesitate to drop me a line!
%prep
%autosetup -n strsimpy-0.2.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-strsimpy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1
- Package Spec generated
|