summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-structureboost.spec153
-rw-r--r--sources1
3 files changed, 155 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..b4ea44c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/structureboost-0.4.3.tar.gz
diff --git a/python-structureboost.spec b/python-structureboost.spec
new file mode 100644
index 0000000..14d3d05
--- /dev/null
+++ b/python-structureboost.spec
@@ -0,0 +1,153 @@
+%global _empty_manifest_terminate_build 0
+Name: python-structureboost
+Version: 0.4.3
+Release: 1
+Summary: StructureBoost is a Python package for gradient boosting using categorical structure. See documentation at: https://structureboost.readthedocs.io/
+License: MIT
+URL: https://github.com/numeristical/structureboost
+Source0: https://mirrors.aliyun.com/pypi/web/packages/d5/a2/7375ca57d807136eda7ff601d310c96d8cf9ab6fd146165809b546de8d64/structureboost-0.4.3.tar.gz
+BuildArch: noarch
+
+Requires: python3-pandas
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-matplotlib
+Requires: python3-joblib
+Requires: python3-ml-insights
+
+%description
+# StructureBoost
+
+StructureBoost is a package to do Gradient Boosting in a manner that exploits the **structure** of categorical variables.
+
+Have you ever used "US state" as a variable in a prediction problem and thought "Why can't my algorithm use the geography of the states to make better predictions?"
+
+Or you've used the month of the year as a predictor, but noticed that January should border December the same way that June borders July. (or hour of the day, or day of the week)
+
+StructureBoost can help. Read the documentation and references below. Or dive into some [examples](https://github.com/numeristical/structureboost/tree/master/examples)
+
+## Video Lectures
+
+There are some explanatory videos on the [Numeristical Youtube Channel](https://www.youtube.com/channel/UCfsbASar8nsLs4NbhQwuaVg)
+
+
+## Documentation
+[Read the Docs](https://structureboost.readthedocs.io/)
+
+## References:
+
+Lucena, B. "Exploiting Categorical Structure with Tree-Based Methods. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:2949-2958, 2020. [http://proceedings.mlr.press/v108/lucena20a/lucena20a.pdf](http://proceedings.mlr.press/v108/lucena20a/lucena20a.pdf)
+
+Lucena, B. "StructureBoost: Efficient Gradient Boosting for Structured Categorical Variables." [https://arxiv.org/abs/2007.04446](https://arxiv.org/abs/2007.04446)
+
+
+
+
+%package -n python3-structureboost
+Summary: StructureBoost is a Python package for gradient boosting using categorical structure. See documentation at: https://structureboost.readthedocs.io/
+Provides: python-structureboost
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-structureboost
+# StructureBoost
+
+StructureBoost is a package to do Gradient Boosting in a manner that exploits the **structure** of categorical variables.
+
+Have you ever used "US state" as a variable in a prediction problem and thought "Why can't my algorithm use the geography of the states to make better predictions?"
+
+Or you've used the month of the year as a predictor, but noticed that January should border December the same way that June borders July. (or hour of the day, or day of the week)
+
+StructureBoost can help. Read the documentation and references below. Or dive into some [examples](https://github.com/numeristical/structureboost/tree/master/examples)
+
+## Video Lectures
+
+There are some explanatory videos on the [Numeristical Youtube Channel](https://www.youtube.com/channel/UCfsbASar8nsLs4NbhQwuaVg)
+
+
+## Documentation
+[Read the Docs](https://structureboost.readthedocs.io/)
+
+## References:
+
+Lucena, B. "Exploiting Categorical Structure with Tree-Based Methods. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:2949-2958, 2020. [http://proceedings.mlr.press/v108/lucena20a/lucena20a.pdf](http://proceedings.mlr.press/v108/lucena20a/lucena20a.pdf)
+
+Lucena, B. "StructureBoost: Efficient Gradient Boosting for Structured Categorical Variables." [https://arxiv.org/abs/2007.04446](https://arxiv.org/abs/2007.04446)
+
+
+
+
+%package help
+Summary: Development documents and examples for structureboost
+Provides: python3-structureboost-doc
+%description help
+# StructureBoost
+
+StructureBoost is a package to do Gradient Boosting in a manner that exploits the **structure** of categorical variables.
+
+Have you ever used "US state" as a variable in a prediction problem and thought "Why can't my algorithm use the geography of the states to make better predictions?"
+
+Or you've used the month of the year as a predictor, but noticed that January should border December the same way that June borders July. (or hour of the day, or day of the week)
+
+StructureBoost can help. Read the documentation and references below. Or dive into some [examples](https://github.com/numeristical/structureboost/tree/master/examples)
+
+## Video Lectures
+
+There are some explanatory videos on the [Numeristical Youtube Channel](https://www.youtube.com/channel/UCfsbASar8nsLs4NbhQwuaVg)
+
+
+## Documentation
+[Read the Docs](https://structureboost.readthedocs.io/)
+
+## References:
+
+Lucena, B. "Exploiting Categorical Structure with Tree-Based Methods. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:2949-2958, 2020. [http://proceedings.mlr.press/v108/lucena20a/lucena20a.pdf](http://proceedings.mlr.press/v108/lucena20a/lucena20a.pdf)
+
+Lucena, B. "StructureBoost: Efficient Gradient Boosting for Structured Categorical Variables." [https://arxiv.org/abs/2007.04446](https://arxiv.org/abs/2007.04446)
+
+
+
+
+%prep
+%autosetup -n structureboost-0.4.3
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-structureboost -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.3-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..f2d2434
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+a40991e923d8429934f8b0f3403e5839 structureboost-0.4.3.tar.gz