1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
%global _empty_manifest_terminate_build 0
Name: python-SuperSuit
Version: 3.7.2
Release: 1
Summary: Wrappers for Gymnasium and PettingZoo
License: MIT License
URL: https://github.com/Farama-Foundation/SuperSuit
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ea/46/a966520971d4dc1c5159b13d4cfb0b7e15ebf12e5a8aafd98d807ee2c93d/SuperSuit-3.7.2.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-gymnasium
%description
<p align="center">
<img src="https://raw.githubusercontent.com/Farama-Foundation/SuperSuit/master/supersuit-text.png" width="500px"/>
</p>
SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers').
We support Gymnasium for single agent environments and PettingZoo for multi-agent environments (both AECEnv and ParallelEnv environments).
Using it with Gymnasium to convert space invaders to have a grey scale observation space and stack the last 4 frames looks like:
```
import gymnasium
from supersuit import color_reduction_v0, frame_stack_v1
env = gymnasium.make('SpaceInvaders-v0')
env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```
Similarly, using SuperSuit with PettingZoo environments looks like
```
from pettingzoo.butterfly import pistonball_v0
env = pistonball_v0.env()
env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```
**Please note**: Once the planned wrapper rewrite of Gymnasium is complete and the vector API is stabilized, this project will be deprecated and rewritten as part of a new wrappers package in PettingZoo and the vectorized API will be redone, taking inspiration from the functionality currently in Gymnasium.
## Installing SuperSuit
To install SuperSuit from pypi:
```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install supersuit
```
Alternatively, to install SuperSuit from source, clone this repo, `cd` to it, and then:
```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install -e .
```
%package -n python3-SuperSuit
Summary: Wrappers for Gymnasium and PettingZoo
Provides: python-SuperSuit
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-SuperSuit
<p align="center">
<img src="https://raw.githubusercontent.com/Farama-Foundation/SuperSuit/master/supersuit-text.png" width="500px"/>
</p>
SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers').
We support Gymnasium for single agent environments and PettingZoo for multi-agent environments (both AECEnv and ParallelEnv environments).
Using it with Gymnasium to convert space invaders to have a grey scale observation space and stack the last 4 frames looks like:
```
import gymnasium
from supersuit import color_reduction_v0, frame_stack_v1
env = gymnasium.make('SpaceInvaders-v0')
env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```
Similarly, using SuperSuit with PettingZoo environments looks like
```
from pettingzoo.butterfly import pistonball_v0
env = pistonball_v0.env()
env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```
**Please note**: Once the planned wrapper rewrite of Gymnasium is complete and the vector API is stabilized, this project will be deprecated and rewritten as part of a new wrappers package in PettingZoo and the vectorized API will be redone, taking inspiration from the functionality currently in Gymnasium.
## Installing SuperSuit
To install SuperSuit from pypi:
```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install supersuit
```
Alternatively, to install SuperSuit from source, clone this repo, `cd` to it, and then:
```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install -e .
```
%package help
Summary: Development documents and examples for SuperSuit
Provides: python3-SuperSuit-doc
%description help
<p align="center">
<img src="https://raw.githubusercontent.com/Farama-Foundation/SuperSuit/master/supersuit-text.png" width="500px"/>
</p>
SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers').
We support Gymnasium for single agent environments and PettingZoo for multi-agent environments (both AECEnv and ParallelEnv environments).
Using it with Gymnasium to convert space invaders to have a grey scale observation space and stack the last 4 frames looks like:
```
import gymnasium
from supersuit import color_reduction_v0, frame_stack_v1
env = gymnasium.make('SpaceInvaders-v0')
env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```
Similarly, using SuperSuit with PettingZoo environments looks like
```
from pettingzoo.butterfly import pistonball_v0
env = pistonball_v0.env()
env = frame_stack_v1(color_reduction_v0(env, 'full'), 4)
```
**Please note**: Once the planned wrapper rewrite of Gymnasium is complete and the vector API is stabilized, this project will be deprecated and rewritten as part of a new wrappers package in PettingZoo and the vectorized API will be redone, taking inspiration from the functionality currently in Gymnasium.
## Installing SuperSuit
To install SuperSuit from pypi:
```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install supersuit
```
Alternatively, to install SuperSuit from source, clone this repo, `cd` to it, and then:
```
python3 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install -e .
```
%prep
%autosetup -n SuperSuit-3.7.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-SuperSuit -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 3.7.2-1
- Package Spec generated
|