From 014a207d21076c6e9584a332c800bbc885a695b4 Mon Sep 17 00:00:00 2001 From: CoprDistGit Date: Wed, 10 May 2023 05:11:49 +0000 Subject: automatic import of python-targeted --- python-targeted.spec | 129 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 129 insertions(+) create mode 100644 python-targeted.spec (limited to 'python-targeted.spec') diff --git a/python-targeted.spec b/python-targeted.spec new file mode 100644 index 0000000..2222168 --- /dev/null +++ b/python-targeted.spec @@ -0,0 +1,129 @@ +%global _empty_manifest_terminate_build 0 +Name: python-targeted +Version: 0.0.30 +Release: 1 +Summary: Python package for targeted inference. +License: Apache Software License +URL: https://targetlib.org/python/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/69/41/eb97302d2ab4912cfb04c6f4bb29e690321e4c52490c314ee5b4808df1c3/targeted-0.0.30.tar.gz +BuildArch: noarch + + +%description +# Targeted Learning Library + +Python package for targeted inference. + +**targeted** provides a number of methods for semi-parametric +estimation. The library also contains implementations of various +parametric models (including different discrete choice models) and +model diagnostics tools. + +The implemention currently includes +- **Risk regression models** with binary exposure + (Richardson et al., 2017, doi:10.1080/01621459.2016.1192546) +- **Augmented Inverse Probability Weighted** estimators for missing + data and causal inference (Bang and Robins, 2005, + doi:10.1111/j.1541-0420.2005.00377.x) +- Model diagnostics based on **cumulative residuals** methods +- Efficient weighted **Pooled Adjacent Violator Algorithms** +- **Nested multinomial logit** models + +Documentation and tutorials can be found at https://targetlib.org/python/. + +%package -n python3-targeted +Summary: Python package for targeted inference. +Provides: python-targeted +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-targeted +# Targeted Learning Library + +Python package for targeted inference. + +**targeted** provides a number of methods for semi-parametric +estimation. The library also contains implementations of various +parametric models (including different discrete choice models) and +model diagnostics tools. + +The implemention currently includes +- **Risk regression models** with binary exposure + (Richardson et al., 2017, doi:10.1080/01621459.2016.1192546) +- **Augmented Inverse Probability Weighted** estimators for missing + data and causal inference (Bang and Robins, 2005, + doi:10.1111/j.1541-0420.2005.00377.x) +- Model diagnostics based on **cumulative residuals** methods +- Efficient weighted **Pooled Adjacent Violator Algorithms** +- **Nested multinomial logit** models + +Documentation and tutorials can be found at https://targetlib.org/python/. + +%package help +Summary: Development documents and examples for targeted +Provides: python3-targeted-doc +%description help +# Targeted Learning Library + +Python package for targeted inference. + +**targeted** provides a number of methods for semi-parametric +estimation. The library also contains implementations of various +parametric models (including different discrete choice models) and +model diagnostics tools. + +The implemention currently includes +- **Risk regression models** with binary exposure + (Richardson et al., 2017, doi:10.1080/01621459.2016.1192546) +- **Augmented Inverse Probability Weighted** estimators for missing + data and causal inference (Bang and Robins, 2005, + doi:10.1111/j.1541-0420.2005.00377.x) +- Model diagnostics based on **cumulative residuals** methods +- Efficient weighted **Pooled Adjacent Violator Algorithms** +- **Nested multinomial logit** models + +Documentation and tutorials can be found at https://targetlib.org/python/. + +%prep +%autosetup -n targeted-0.0.30 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-targeted -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot - 0.0.30-1 +- Package Spec generated -- cgit v1.2.3