summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-10 23:43:26 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-10 23:43:26 +0000
commitd9979bacb63024ae4a0e96eaceef3cc93f8e6ac8 (patch)
treebacc3a446372a7a55348bef8f96d347499ff8a21
parent05a4fb070fba34c84165ebdcda8a4f2a5ec5c1d4 (diff)
automatic import of python-tbats
-rw-r--r--.gitignore1
-rw-r--r--python-tbats.spec442
-rw-r--r--sources1
3 files changed, 444 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..4710fb7 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/tbats-1.1.2.tar.gz
diff --git a/python-tbats.spec b/python-tbats.spec
new file mode 100644
index 0000000..ad3f679
--- /dev/null
+++ b/python-tbats.spec
@@ -0,0 +1,442 @@
+%global _empty_manifest_terminate_build 0
+Name: python-tbats
+Version: 1.1.2
+Release: 1
+Summary: BATS and TBATS for time series forecasting
+License: MIT License
+URL: https://github.com/intive-DataScience/tbats
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d2/3f/51a5272d9672e1d4c95630da0077eef709a82b7956345223fd2df8206b25/tbats-1.1.2.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-pmdarima
+Requires: python3-scikit-learn
+Requires: python3-pip-tools
+Requires: python3-pytest
+Requires: python3-rpy2
+
+%description
+# BATS and TBATS time series forecasting
+
+Package provides BATS and TBATS time series forecasting methods described in:
+
+> De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.
+
+
+## Installation
+
+From pypi:
+
+```bash
+pip install tbats
+```
+
+Import via:
+
+```python
+from tbats import BATS, TBATS
+```
+
+## Minimal working example:
+
+```python
+from tbats import TBATS
+import numpy as np
+
+# required on windows for multi-processing,
+# see https://docs.python.org/2/library/multiprocessing.html#windows
+if __name__ == '__main__':
+ np.random.seed(2342)
+ t = np.array(range(0, 160))
+ y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
+ ((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10
+
+ # Create estimator
+ estimator = TBATS(seasonal_periods=[14, 30.5])
+
+ # Fit model
+ fitted_model = estimator.fit(y)
+
+ # Forecast 14 steps ahead
+ y_forecasted = fitted_model.forecast(steps=14)
+
+ # Summarize fitted model
+ print(fitted_model.summary())
+```
+
+Reading model details
+
+```python
+# Time series analysis
+print(fitted_model.y_hat) # in sample prediction
+print(fitted_model.resid) # in sample residuals
+print(fitted_model.aic)
+
+# Reading model parameters
+print(fitted_model.params.alpha)
+print(fitted_model.params.beta)
+print(fitted_model.params.x0)
+print(fitted_model.params.components.use_box_cox)
+print(fitted_model.params.components.seasonal_harmonics)
+```
+
+See **examples** directory for more details.
+
+## Troubleshooting
+
+BATS and TBATS tries multitude of models under the hood and **may appear slow when fitting** to long time series. In order to speed it up you can start with constrained model search space. It is recommended to run it without Box-Cox transformation and ARMA errors modelling that are the slowest model elements:
+
+```python
+# Create estimator
+estimator = TBATS(
+ seasonal_periods=[14, 30.5],
+ use_arma_errors=False, # shall try only models without ARMA
+ use_box_cox=False # will not use Box-Cox
+)
+fitted_model = estimator.fit(y)
+```
+
+In some environment configurations parallel computation of models freezes. Reason for this is unclear yet. If **the process appears to be stuck** you can try running it on a single core:
+
+```python
+estimator = TBATS(
+ seasonal_periods=[14, 30.5],
+ n_jobs=1
+)
+fitted_model = estimator.fit(y)
+```
+
+## For Contributors
+
+Building package:
+
+```bash
+pip install -e .[dev]
+```
+
+Unit and integration tests:
+
+```bash
+pytest test/
+```
+
+R forecast package comparison tests. Those DO NOT RUN with default test command, you need R and forecast package installed:
+```bash
+pytest test_R/
+```
+
+## Comparison to R implementation
+
+Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.
+
+- BATS in R https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/bats
+- TBATS in R: https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/tbats
+
+
+
+
+
+
+
+
+%package -n python3-tbats
+Summary: BATS and TBATS for time series forecasting
+Provides: python-tbats
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-tbats
+# BATS and TBATS time series forecasting
+
+Package provides BATS and TBATS time series forecasting methods described in:
+
+> De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.
+
+
+## Installation
+
+From pypi:
+
+```bash
+pip install tbats
+```
+
+Import via:
+
+```python
+from tbats import BATS, TBATS
+```
+
+## Minimal working example:
+
+```python
+from tbats import TBATS
+import numpy as np
+
+# required on windows for multi-processing,
+# see https://docs.python.org/2/library/multiprocessing.html#windows
+if __name__ == '__main__':
+ np.random.seed(2342)
+ t = np.array(range(0, 160))
+ y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
+ ((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10
+
+ # Create estimator
+ estimator = TBATS(seasonal_periods=[14, 30.5])
+
+ # Fit model
+ fitted_model = estimator.fit(y)
+
+ # Forecast 14 steps ahead
+ y_forecasted = fitted_model.forecast(steps=14)
+
+ # Summarize fitted model
+ print(fitted_model.summary())
+```
+
+Reading model details
+
+```python
+# Time series analysis
+print(fitted_model.y_hat) # in sample prediction
+print(fitted_model.resid) # in sample residuals
+print(fitted_model.aic)
+
+# Reading model parameters
+print(fitted_model.params.alpha)
+print(fitted_model.params.beta)
+print(fitted_model.params.x0)
+print(fitted_model.params.components.use_box_cox)
+print(fitted_model.params.components.seasonal_harmonics)
+```
+
+See **examples** directory for more details.
+
+## Troubleshooting
+
+BATS and TBATS tries multitude of models under the hood and **may appear slow when fitting** to long time series. In order to speed it up you can start with constrained model search space. It is recommended to run it without Box-Cox transformation and ARMA errors modelling that are the slowest model elements:
+
+```python
+# Create estimator
+estimator = TBATS(
+ seasonal_periods=[14, 30.5],
+ use_arma_errors=False, # shall try only models without ARMA
+ use_box_cox=False # will not use Box-Cox
+)
+fitted_model = estimator.fit(y)
+```
+
+In some environment configurations parallel computation of models freezes. Reason for this is unclear yet. If **the process appears to be stuck** you can try running it on a single core:
+
+```python
+estimator = TBATS(
+ seasonal_periods=[14, 30.5],
+ n_jobs=1
+)
+fitted_model = estimator.fit(y)
+```
+
+## For Contributors
+
+Building package:
+
+```bash
+pip install -e .[dev]
+```
+
+Unit and integration tests:
+
+```bash
+pytest test/
+```
+
+R forecast package comparison tests. Those DO NOT RUN with default test command, you need R and forecast package installed:
+```bash
+pytest test_R/
+```
+
+## Comparison to R implementation
+
+Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.
+
+- BATS in R https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/bats
+- TBATS in R: https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/tbats
+
+
+
+
+
+
+
+
+%package help
+Summary: Development documents and examples for tbats
+Provides: python3-tbats-doc
+%description help
+# BATS and TBATS time series forecasting
+
+Package provides BATS and TBATS time series forecasting methods described in:
+
+> De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527.
+
+
+## Installation
+
+From pypi:
+
+```bash
+pip install tbats
+```
+
+Import via:
+
+```python
+from tbats import BATS, TBATS
+```
+
+## Minimal working example:
+
+```python
+from tbats import TBATS
+import numpy as np
+
+# required on windows for multi-processing,
+# see https://docs.python.org/2/library/multiprocessing.html#windows
+if __name__ == '__main__':
+ np.random.seed(2342)
+ t = np.array(range(0, 160))
+ y = 5 * np.sin(t * 2 * np.pi / 7) + 2 * np.cos(t * 2 * np.pi / 30.5) + \
+ ((t / 20) ** 1.5 + np.random.normal(size=160) * t / 50) + 10
+
+ # Create estimator
+ estimator = TBATS(seasonal_periods=[14, 30.5])
+
+ # Fit model
+ fitted_model = estimator.fit(y)
+
+ # Forecast 14 steps ahead
+ y_forecasted = fitted_model.forecast(steps=14)
+
+ # Summarize fitted model
+ print(fitted_model.summary())
+```
+
+Reading model details
+
+```python
+# Time series analysis
+print(fitted_model.y_hat) # in sample prediction
+print(fitted_model.resid) # in sample residuals
+print(fitted_model.aic)
+
+# Reading model parameters
+print(fitted_model.params.alpha)
+print(fitted_model.params.beta)
+print(fitted_model.params.x0)
+print(fitted_model.params.components.use_box_cox)
+print(fitted_model.params.components.seasonal_harmonics)
+```
+
+See **examples** directory for more details.
+
+## Troubleshooting
+
+BATS and TBATS tries multitude of models under the hood and **may appear slow when fitting** to long time series. In order to speed it up you can start with constrained model search space. It is recommended to run it without Box-Cox transformation and ARMA errors modelling that are the slowest model elements:
+
+```python
+# Create estimator
+estimator = TBATS(
+ seasonal_periods=[14, 30.5],
+ use_arma_errors=False, # shall try only models without ARMA
+ use_box_cox=False # will not use Box-Cox
+)
+fitted_model = estimator.fit(y)
+```
+
+In some environment configurations parallel computation of models freezes. Reason for this is unclear yet. If **the process appears to be stuck** you can try running it on a single core:
+
+```python
+estimator = TBATS(
+ seasonal_periods=[14, 30.5],
+ n_jobs=1
+)
+fitted_model = estimator.fit(y)
+```
+
+## For Contributors
+
+Building package:
+
+```bash
+pip install -e .[dev]
+```
+
+Unit and integration tests:
+
+```bash
+pytest test/
+```
+
+R forecast package comparison tests. Those DO NOT RUN with default test command, you need R and forecast package installed:
+```bash
+pytest test_R/
+```
+
+## Comparison to R implementation
+
+Python implementation is meant to be as much as possible equivalent to R implementation in forecast package.
+
+- BATS in R https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/bats
+- TBATS in R: https://www.rdocumentation.org/packages/forecast/versions/8.4/topics/tbats
+
+
+
+
+
+
+
+
+%prep
+%autosetup -n tbats-1.1.2
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-tbats -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.2-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..6b04428
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+9dfb85fe788728aad738b4c4f5044d1a tbats-1.1.2.tar.gz