diff options
Diffstat (limited to 'python-tdub.spec')
| -rw-r--r-- | python-tdub.spec | 164 |
1 files changed, 164 insertions, 0 deletions
diff --git a/python-tdub.spec b/python-tdub.spec new file mode 100644 index 0000000..7ef99ab --- /dev/null +++ b/python-tdub.spec @@ -0,0 +1,164 @@ +%global _empty_manifest_terminate_build 0 +Name: python-tdub +Version: 0.0.79 +Release: 1 +Summary: tW analysis tools. +License: BSD 3-clause +URL: https://github.com/douglasdavis/tdub +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/eb/57e2f7c6f6f6f2089b5c4a5c3b235e327876a25015d0aec35d0bd7a2bd85/tdub-0.0.79.tar.gz +BuildArch: noarch + +Requires: python3-click +Requires: python3-formulate +Requires: python3-joblib +Requires: python3-lz4 +Requires: python3-matplotlib +Requires: python3-numexpr +Requires: python3-pandas +Requires: python3-pycondor +Requires: python3-pygram11 +Requires: python3-pyyaml +Requires: python3-scikit-learn +Requires: python3-uproot +Requires: python3-xxhash +Requires: python3-requests + +%description +# tdub + +[](https://github.com/douglasdavis/tdub/actions) +[](https://tdub.readthedocs.io/) +[](https://pypi.org/project/tdub/) +[](https://pypi.org/project/tdub/) + +`tdub` is a Python project for handling some downstsream steps in the +ATLAS Run 2 *tW* inclusive cross section analysis. The project provides +a simple command line interface for performing standard analysis tasks +including: + +- BDT feature selection and hyperparameter optimization. +- Training BDT models on our Monte Carlo. +- Applying trained BDT models to our data and Monte Carlo. +- Generating plots from various raw sources (our ROOT files and + Classifier training output). +- Generating plots from the output of + [`TRExFitter`](https://gitlab.cern.ch/TRExStats/TRExFitter/). + +For potentially finer-grained tasks the API is fully documented. The +API mainly provides quick and easy access to pythonic representations +(i.e. dataframes or NumPy arrays) of our datasets (which of course +originate from [ROOT](https://root.cern/) files), modularized ML +tasks, and a set of utilities tailored for interacting with our +specific datasets. + + +%package -n python3-tdub +Summary: tW analysis tools. +Provides: python-tdub +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-tdub +# tdub + +[](https://github.com/douglasdavis/tdub/actions) +[](https://tdub.readthedocs.io/) +[](https://pypi.org/project/tdub/) +[](https://pypi.org/project/tdub/) + +`tdub` is a Python project for handling some downstsream steps in the +ATLAS Run 2 *tW* inclusive cross section analysis. The project provides +a simple command line interface for performing standard analysis tasks +including: + +- BDT feature selection and hyperparameter optimization. +- Training BDT models on our Monte Carlo. +- Applying trained BDT models to our data and Monte Carlo. +- Generating plots from various raw sources (our ROOT files and + Classifier training output). +- Generating plots from the output of + [`TRExFitter`](https://gitlab.cern.ch/TRExStats/TRExFitter/). + +For potentially finer-grained tasks the API is fully documented. The +API mainly provides quick and easy access to pythonic representations +(i.e. dataframes or NumPy arrays) of our datasets (which of course +originate from [ROOT](https://root.cern/) files), modularized ML +tasks, and a set of utilities tailored for interacting with our +specific datasets. + + +%package help +Summary: Development documents and examples for tdub +Provides: python3-tdub-doc +%description help +# tdub + +[](https://github.com/douglasdavis/tdub/actions) +[](https://tdub.readthedocs.io/) +[](https://pypi.org/project/tdub/) +[](https://pypi.org/project/tdub/) + +`tdub` is a Python project for handling some downstsream steps in the +ATLAS Run 2 *tW* inclusive cross section analysis. The project provides +a simple command line interface for performing standard analysis tasks +including: + +- BDT feature selection and hyperparameter optimization. +- Training BDT models on our Monte Carlo. +- Applying trained BDT models to our data and Monte Carlo. +- Generating plots from various raw sources (our ROOT files and + Classifier training output). +- Generating plots from the output of + [`TRExFitter`](https://gitlab.cern.ch/TRExStats/TRExFitter/). + +For potentially finer-grained tasks the API is fully documented. The +API mainly provides quick and easy access to pythonic representations +(i.e. dataframes or NumPy arrays) of our datasets (which of course +originate from [ROOT](https://root.cern/) files), modularized ML +tasks, and a set of utilities tailored for interacting with our +specific datasets. + + +%prep +%autosetup -n tdub-0.0.79 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-tdub -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.79-1 +- Package Spec generated |
