summaryrefslogtreecommitdiff
path: root/python-tempeh.spec
blob: 75e80ed0c04e3813713c1c5e3f7d676bb38c040a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
%global _empty_manifest_terminate_build 0
Name:		python-tempeh
Version:	0.1.12
Release:	1
Summary:	Machine Learning Performance Testing Framework
License:	MIT License
URL:		https://github.com/microsoft/tempeh
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/76/1b/6cec6ab29489a619141fa0312da7157acebdf2cf9ffe37ecfd4a61365ea1/tempeh-0.1.12.tar.gz
BuildArch:	noarch

Requires:	python3-memory-profiler
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-pytest
Requires:	python3-requests
Requires:	python3-scipy
Requires:	python3-shap
Requires:	python3-scikit-learn

%description
[![Build Status](https://img.shields.io/azure-devops/build/responsibleai/tempeh/19/master?failed_label=bad&passed_label=good&label=GatedCheckin%3ADev)](https://dev.azure.com/responsibleai/tempeh/_build/latest?definitionId=19&branchName=master) ![MIT license](https://img.shields.io/badge/License-MIT-blue.svg) ![pypi badge](https://img.shields.io/pypi/v/tempeh?color=blue)


# tempeh

tempeh is a framework to

**TE**st

**M**achine learning

**PE**rformance

ex**H**austively

which includes tracking memory usage and run time. This is particularly useful as a pluggable tool for your repository's performance tests. Typically, people want to run them periodically over various datasets and/or with a number of models to catch regressions with respect to run time or memory consumption. This should be as easy as

```python
import pytest
from time import time
from tempeh.configurations import datasets, models

@pytest.mark.parametrize('Dataset', datasets.values())
@pytest.mark.parametrize('Model', models.values())
def test_fit_predict_regression(Dataset, Model):
    dataset = Dataset()
    X_train, X_test = dataset.get_X()
    y_train, y_test = dataset.get_y()
    model = Model()
    max_execution_time = get_max_execution_time(dataset, model)
    if model.compatible_with_dataset(dataset):
        start_time = time()
        model.fit(X_train, y_train)
        model.predict(X_test)
        duration = time() - start_time

        assert duration < max_execution_time
```

## Installation

tempeh depends on various packages to provide models, including `tensorflow`, `torch`, `xgboost`, `lightgbm`. To install a release version of `tempeh` just run

```python
pip install tempeh
```

<details>
<summary>
<strong>
<em>
Common issues
</em>
</strong>
</summary>

- If you're using a 32-bit Python version you might need to switch to a 64-bit Python version first to successfully install tensorflow.
- If the installation of `torch` fails try using the recommendation from the [pytorch website](https://pytorch.org/get-started/locally/) for stable versions without CUDA for your python version on your operating system.
- If the installation of `lightgbm` or `xgboost` fails try to use a pip version less than 20.0 until their bug is resolved.
</details>

## Structure

### Datasets

Datasets (located in the `datasets/` directory) encapsulate different datasets used for testing.

#### To add a new one

+ Create a python file in the `datasets/` directory with naming convention `[name]_datasets.py`
+ Subclass `BasePerformanceDatasetWrapper`. The naming convention is `[dataset_name]PerformanceDatasetWrapper`
+ In `__init__` load the dataset and call `super().__init__(data, targets, size)`
+ Add the class to `__init__.py`
+ Make sure the class contains class variables `task`, `data_type`, `size`
+ Add an entry to the `datasets` dictionary in `configurations.py`.

### Models

Models (`models/` directory) wrap different machine learning models.

#### To add a new one

+ Create a python file in the `models/` directory with naming convention `[name]_model.py`
+ Subclass `BaseModelWrapper` and name the class `[name]ModelWrapper`
+ In `__init__` train the model; we expect format `__init__(self, ...)`
+ Models must contain `tasks` and `algorithm`
+ Add an entry to the `models` dictionary in `configurations.py`.


## Maintainers

In alphabetical order:

- [Eduardo de Leon](https://github.com/eedeleon)
- [Ilya Matiach](https://github.com/imatiach-msft)
- [Roman Lutz](https://github.com/romanlutz)


# Contributing

To contribute please check our [Contributing Guide](CONTRIBUTING.md).

# Issues

## Regular (non-Security) Issues
Please submit a report through [Github issues](https://github.com/microsoft/tempeh/issues). A maintainer will respond within a reasonable period of time to handle the issue as follows:
- bug: triage as `bug` and provide estimated timeline based on severity
- feature request: triage as `feature request` and provide estimated timeline
- question or discussion: triage as `question` and respond or notify/identify a suitable expert to respond

Maintainers are supposed to link duplicate issues when possible.


## Reporting Security Issues

Please take a look at our guidelines for reporting [security issues](SECURITY.md).




%package -n python3-tempeh
Summary:	Machine Learning Performance Testing Framework
Provides:	python-tempeh
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tempeh
[![Build Status](https://img.shields.io/azure-devops/build/responsibleai/tempeh/19/master?failed_label=bad&passed_label=good&label=GatedCheckin%3ADev)](https://dev.azure.com/responsibleai/tempeh/_build/latest?definitionId=19&branchName=master) ![MIT license](https://img.shields.io/badge/License-MIT-blue.svg) ![pypi badge](https://img.shields.io/pypi/v/tempeh?color=blue)


# tempeh

tempeh is a framework to

**TE**st

**M**achine learning

**PE**rformance

ex**H**austively

which includes tracking memory usage and run time. This is particularly useful as a pluggable tool for your repository's performance tests. Typically, people want to run them periodically over various datasets and/or with a number of models to catch regressions with respect to run time or memory consumption. This should be as easy as

```python
import pytest
from time import time
from tempeh.configurations import datasets, models

@pytest.mark.parametrize('Dataset', datasets.values())
@pytest.mark.parametrize('Model', models.values())
def test_fit_predict_regression(Dataset, Model):
    dataset = Dataset()
    X_train, X_test = dataset.get_X()
    y_train, y_test = dataset.get_y()
    model = Model()
    max_execution_time = get_max_execution_time(dataset, model)
    if model.compatible_with_dataset(dataset):
        start_time = time()
        model.fit(X_train, y_train)
        model.predict(X_test)
        duration = time() - start_time

        assert duration < max_execution_time
```

## Installation

tempeh depends on various packages to provide models, including `tensorflow`, `torch`, `xgboost`, `lightgbm`. To install a release version of `tempeh` just run

```python
pip install tempeh
```

<details>
<summary>
<strong>
<em>
Common issues
</em>
</strong>
</summary>

- If you're using a 32-bit Python version you might need to switch to a 64-bit Python version first to successfully install tensorflow.
- If the installation of `torch` fails try using the recommendation from the [pytorch website](https://pytorch.org/get-started/locally/) for stable versions without CUDA for your python version on your operating system.
- If the installation of `lightgbm` or `xgboost` fails try to use a pip version less than 20.0 until their bug is resolved.
</details>

## Structure

### Datasets

Datasets (located in the `datasets/` directory) encapsulate different datasets used for testing.

#### To add a new one

+ Create a python file in the `datasets/` directory with naming convention `[name]_datasets.py`
+ Subclass `BasePerformanceDatasetWrapper`. The naming convention is `[dataset_name]PerformanceDatasetWrapper`
+ In `__init__` load the dataset and call `super().__init__(data, targets, size)`
+ Add the class to `__init__.py`
+ Make sure the class contains class variables `task`, `data_type`, `size`
+ Add an entry to the `datasets` dictionary in `configurations.py`.

### Models

Models (`models/` directory) wrap different machine learning models.

#### To add a new one

+ Create a python file in the `models/` directory with naming convention `[name]_model.py`
+ Subclass `BaseModelWrapper` and name the class `[name]ModelWrapper`
+ In `__init__` train the model; we expect format `__init__(self, ...)`
+ Models must contain `tasks` and `algorithm`
+ Add an entry to the `models` dictionary in `configurations.py`.


## Maintainers

In alphabetical order:

- [Eduardo de Leon](https://github.com/eedeleon)
- [Ilya Matiach](https://github.com/imatiach-msft)
- [Roman Lutz](https://github.com/romanlutz)


# Contributing

To contribute please check our [Contributing Guide](CONTRIBUTING.md).

# Issues

## Regular (non-Security) Issues
Please submit a report through [Github issues](https://github.com/microsoft/tempeh/issues). A maintainer will respond within a reasonable period of time to handle the issue as follows:
- bug: triage as `bug` and provide estimated timeline based on severity
- feature request: triage as `feature request` and provide estimated timeline
- question or discussion: triage as `question` and respond or notify/identify a suitable expert to respond

Maintainers are supposed to link duplicate issues when possible.


## Reporting Security Issues

Please take a look at our guidelines for reporting [security issues](SECURITY.md).




%package help
Summary:	Development documents and examples for tempeh
Provides:	python3-tempeh-doc
%description help
[![Build Status](https://img.shields.io/azure-devops/build/responsibleai/tempeh/19/master?failed_label=bad&passed_label=good&label=GatedCheckin%3ADev)](https://dev.azure.com/responsibleai/tempeh/_build/latest?definitionId=19&branchName=master) ![MIT license](https://img.shields.io/badge/License-MIT-blue.svg) ![pypi badge](https://img.shields.io/pypi/v/tempeh?color=blue)


# tempeh

tempeh is a framework to

**TE**st

**M**achine learning

**PE**rformance

ex**H**austively

which includes tracking memory usage and run time. This is particularly useful as a pluggable tool for your repository's performance tests. Typically, people want to run them periodically over various datasets and/or with a number of models to catch regressions with respect to run time or memory consumption. This should be as easy as

```python
import pytest
from time import time
from tempeh.configurations import datasets, models

@pytest.mark.parametrize('Dataset', datasets.values())
@pytest.mark.parametrize('Model', models.values())
def test_fit_predict_regression(Dataset, Model):
    dataset = Dataset()
    X_train, X_test = dataset.get_X()
    y_train, y_test = dataset.get_y()
    model = Model()
    max_execution_time = get_max_execution_time(dataset, model)
    if model.compatible_with_dataset(dataset):
        start_time = time()
        model.fit(X_train, y_train)
        model.predict(X_test)
        duration = time() - start_time

        assert duration < max_execution_time
```

## Installation

tempeh depends on various packages to provide models, including `tensorflow`, `torch`, `xgboost`, `lightgbm`. To install a release version of `tempeh` just run

```python
pip install tempeh
```

<details>
<summary>
<strong>
<em>
Common issues
</em>
</strong>
</summary>

- If you're using a 32-bit Python version you might need to switch to a 64-bit Python version first to successfully install tensorflow.
- If the installation of `torch` fails try using the recommendation from the [pytorch website](https://pytorch.org/get-started/locally/) for stable versions without CUDA for your python version on your operating system.
- If the installation of `lightgbm` or `xgboost` fails try to use a pip version less than 20.0 until their bug is resolved.
</details>

## Structure

### Datasets

Datasets (located in the `datasets/` directory) encapsulate different datasets used for testing.

#### To add a new one

+ Create a python file in the `datasets/` directory with naming convention `[name]_datasets.py`
+ Subclass `BasePerformanceDatasetWrapper`. The naming convention is `[dataset_name]PerformanceDatasetWrapper`
+ In `__init__` load the dataset and call `super().__init__(data, targets, size)`
+ Add the class to `__init__.py`
+ Make sure the class contains class variables `task`, `data_type`, `size`
+ Add an entry to the `datasets` dictionary in `configurations.py`.

### Models

Models (`models/` directory) wrap different machine learning models.

#### To add a new one

+ Create a python file in the `models/` directory with naming convention `[name]_model.py`
+ Subclass `BaseModelWrapper` and name the class `[name]ModelWrapper`
+ In `__init__` train the model; we expect format `__init__(self, ...)`
+ Models must contain `tasks` and `algorithm`
+ Add an entry to the `models` dictionary in `configurations.py`.


## Maintainers

In alphabetical order:

- [Eduardo de Leon](https://github.com/eedeleon)
- [Ilya Matiach](https://github.com/imatiach-msft)
- [Roman Lutz](https://github.com/romanlutz)


# Contributing

To contribute please check our [Contributing Guide](CONTRIBUTING.md).

# Issues

## Regular (non-Security) Issues
Please submit a report through [Github issues](https://github.com/microsoft/tempeh/issues). A maintainer will respond within a reasonable period of time to handle the issue as follows:
- bug: triage as `bug` and provide estimated timeline based on severity
- feature request: triage as `feature request` and provide estimated timeline
- question or discussion: triage as `question` and respond or notify/identify a suitable expert to respond

Maintainers are supposed to link duplicate issues when possible.


## Reporting Security Issues

Please take a look at our guidelines for reporting [security issues](SECURITY.md).




%prep
%autosetup -n tempeh-0.1.12

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tempeh -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.12-1
- Package Spec generated