summaryrefslogtreecommitdiff
path: root/python-tensorflowasr.spec
blob: ed59cee1325ac04356ca4c8c8e48863d1a3185b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
%global _empty_manifest_terminate_build 0
Name:		python-TensorFlowASR
Version:	1.0.3
Release:	1
Summary:	Almost State-of-the-art Automatic Speech Recognition using Tensorflow 2
License:	Apache Software License
URL:		https://github.com/TensorSpeech/TensorFlowASR
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/89/e3/3bd44a5ebd93eb4c604ecfbbf603b7a5efd5d20ea595f216c4005045f2d5/TensorFlowASR-1.0.3.tar.gz
BuildArch:	noarch

Requires:	python3-SoundFile
Requires:	python3-tensorflow-datasets
Requires:	python3-nltk
Requires:	python3-numpy
Requires:	python3-sentencepiece
Requires:	python3-tqdm
Requires:	python3-librosa
Requires:	python3-PyYAML
Requires:	python3-Pillow
Requires:	python3-black
Requires:	python3-flake8
Requires:	python3-sounddevice
Requires:	python3-fire
Requires:	python3-tensorflow
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io
Requires:	python3-tensorflow-gpu
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io
Requires:	python3-tensorflow
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io
Requires:	python3-tensorflow-gpu
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io
Requires:	python3-tensorflow
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io
Requires:	python3-tensorflow-gpu
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io
Requires:	python3-tensorflow
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io
Requires:	python3-tensorflow-gpu
Requires:	python3-tensorflow-text
Requires:	python3-tensorflow-io

%description
<h1 align="center">
<p>TensorFlowASR :zap:</p>
<p align="center">
<a href="https://github.com/TensorSpeech/TensorFlowASR/blob/main/LICENSE">
  <img alt="GitHub" src="https://img.shields.io/github/license/TensorSpeech/TensorFlowASR?logo=apache&logoColor=green">
</a>
<img alt="python" src="https://img.shields.io/badge/python-%3E%3D3.6-blue?logo=python">
<img alt="tensorflow" src="https://img.shields.io/badge/tensorflow-%3E%3D2.5.1-orange?logo=tensorflow">
<a href="https://pypi.org/project/TensorFlowASR/">
  <img alt="PyPI" src="https://img.shields.io/pypi/v/TensorFlowASR?color=%234285F4&label=release&logo=pypi&logoColor=%234285F4">
</a>
</p>
</h1>
<h2 align="center">
<p>Almost State-of-the-art Automatic Speech Recognition in Tensorflow 2</p>
</h2>

<p align="center">
TensorFlowASR implements some automatic speech recognition architectures such as DeepSpeech2, Jasper, RNN Transducer, ContextNet, Conformer, etc. These models can be converted to TFLite to reduce memory and computation for deployment :smile:
</p>

## What's New?

- (04/17/2021) Refactor repository with new version 1.x
- (02/16/2021) Supported for TPU training
- (12/27/2020) Supported _naive_ token level timestamp, see [demo](./examples/demonstration/conformer.py) with flag `--timestamp`
- (12/17/2020) Supported ContextNet [http://arxiv.org/abs/2005.03191](http://arxiv.org/abs/2005.03191)
- (12/12/2020) Add support for using masking
- (11/14/2020) Supported Gradient Accumulation for Training in Larger Batch Size

## Table of Contents

<!-- TOC -->

- [What's New?](#whats-new)
- [Table of Contents](#table-of-contents)
- [:yum: Supported Models](#yum-supported-models)
  - [Baselines](#baselines)
  - [Publications](#publications)
- [Installation](#installation)
  - [Installing from source (recommended)](#installing-from-source-recommended)
  - [Installing via PyPi](#installing-via-pypi)
  - [Running in a container](#running-in-a-container)
- [Setup training and testing](#setup-training-and-testing)
- [TFLite Convertion](#tflite-convertion)
- [Features Extraction](#features-extraction)
- [Augmentations](#augmentations)
- [Training & Testing Tutorial](#training--testing-tutorial)
- [Corpus Sources and Pretrained Models](#corpus-sources-and-pretrained-models)
  - [English](#english)
  - [Vietnamese](#vietnamese)
  - [German](#german)
- [References & Credits](#references--credits)
- [Contact](#contact)

<!-- /TOC -->

## :yum: Supported Models

### Baselines

- **Transducer Models** (End2end models using RNNT Loss for training, currently supported Conformer, ContextNet, Streaming Transducer)
- **CTCModel** (End2end models using CTC Loss for training, currently supported DeepSpeech2, Jasper)

### Publications

- **Conformer Transducer** (Reference: [https://arxiv.org/abs/2005.08100](https://arxiv.org/abs/2005.08100))
  See [examples/conformer](./examples/conformer)
- **Streaming Transducer** (Reference: [https://arxiv.org/abs/1811.06621](https://arxiv.org/abs/1811.06621))
  See [examples/streaming_transducer](./examples/streaming_transducer)
- **ContextNet** (Reference: [http://arxiv.org/abs/2005.03191](http://arxiv.org/abs/2005.03191))
  See [examples/contextnet](./examples/contextnet)
- **Deep Speech 2** (Reference: [https://arxiv.org/abs/1512.02595](https://arxiv.org/abs/1512.02595))
  See [examples/deepspeech2](./examples/deepspeech2)
- **Jasper** (Reference: [https://arxiv.org/abs/1904.03288](https://arxiv.org/abs/1904.03288))
  See [examples/jasper](./examples/jasper)

## Installation

For training and testing, you should use `git clone` for installing necessary packages from other authors (`ctc_decoders`, `rnnt_loss`, etc.)

### Installing from source (recommended)

```bash
git clone https://github.com/TensorSpeech/TensorFlowASR.git
cd TensorFlowASR
# Tensorflow 2.x (with 2.x.x >= 2.5.1)
pip3 install -e ".[tf2.x]" # or ".[tf2.x-gpu]"
```

For anaconda3:

```bash
conda create -y -n tfasr tensorflow-gpu python=3.8 # tensorflow if using CPU, this makes sure conda install all dependencies for tensorflow
conda activate tfasr
pip install -U tensorflow-gpu # upgrade to latest version of tensorflow
git clone https://github.com/TensorSpeech/TensorFlowASR.git
cd TensorFlowASR
# Tensorflow 2.x (with 2.x.x >= 2.5.1)
pip3 install -e ".[tf2.x]" # or ".[tf2.x-gpu]"
```

### Installing via PyPi

```bash
# Tensorflow 2.x (with 2.x >= 2.3)
pip3 install -U "TensorFlowASR[tf2.x]" # or pip3 install -U "TensorFlowASR[tf2.x-gpu]"
```


### Running in a container

```bash
docker-compose up -d
```

## Setup training and testing

- For datasets, see [datasets](./tensorflow_asr/datasets/README.md)

- For _training, testing and using_ **CTC Models**, run `./scripts/install_ctc_decoders.sh`

- For _training_ **Transducer Models** with RNNT Loss in TF, make sure that [warp-transducer](https://github.com/HawkAaron/warp-transducer) **is not installed** (by simply run `pip3 uninstall warprnnt-tensorflow`) (**Recommended**)

- For _training_ **Transducer Models** with RNNT Loss from [warp-transducer](https://github.com/HawkAaron/warp-transducer), run `export CUDA_HOME=/usr/local/cuda && ./scripts/install_rnnt_loss.sh` (**Note**: only `export CUDA_HOME` when you have CUDA)

- For _mixed precision training_, use flag `--mxp` when running python scripts from [examples](./examples)

- For _enabling XLA_, run `TF_XLA_FLAGS=--tf_xla_auto_jit=2 python3 $path_to_py_script`)

- For _hiding warnings_, run `export TF_CPP_MIN_LOG_LEVEL=2` before running any examples

## TFLite Convertion

After converting to tflite, the tflite model is like a function that transforms directly from an **audio signal** to **unicode code points**, then we can convert unicode points to string.

1. Install `tf-nightly` using `pip install tf-nightly`
2. Build a model with the same architecture as the trained model _(if model has tflite argument, you must set it to True)_, then load the weights from trained model to the built model
3. Load `TFSpeechFeaturizer` and `TextFeaturizer` to model using function `add_featurizers`
4. Convert model's function to tflite as follows:

```python
func = model.make_tflite_function(**options) # options are the arguments of the function
concrete_func = func.get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.experimental_new_converter = True
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
                                       tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()
```

5. Save the converted tflite model as follows:

```python
if not os.path.exists(os.path.dirname(tflite_path)):
    os.makedirs(os.path.dirname(tflite_path))
with open(tflite_path, "wb") as tflite_out:
    tflite_out.write(tflite_model)
```

5. Then the `.tflite` model is ready to be deployed

## Features Extraction

See [features_extraction](./tensorflow_asr/featurizers/README.md)

## Augmentations

See [augmentations](./tensorflow_asr/augmentations/README.md)

## Training & Testing Tutorial

1. Define config YAML file, see the `config.yml` files in the [example folder](./examples) for reference (you can copy and modify values such as parameters, paths, etc.. to match your local machine configuration)
2. Download your corpus (a.k.a datasets) and create a script to generate `transcripts.tsv` files from your corpus (this is general format used in this project because each dataset has different format). For more detail, see [datasets](./tensorflow_asr/datasets/README.md). **Note:** Make sure your data contain only characters in your language, for example, english has `a` to `z` and `'`. **Do not use `cache` if your dataset size is not fit in the RAM**.
3. [Optional] Generate TFRecords to use `tf.data.TFRecordDataset` for better performance by using the script [create_tfrecords.py](./scripts/create_tfrecords.py)
4. Create vocabulary file (characters or subwords/wordpieces) by defining `language.characters`, using the scripts [generate_vocab_subwords.py](./scripts/generate_vocab_subwords.py) or [generate_vocab_sentencepiece.py](./scripts/generate_vocab_sentencepiece.py). There're predefined ones in [vocabularies](./vocabularies)
5. [Optional] Generate metadata file for your dataset by using script [generate_metadata.py](./scripts/generate_metadata.py). This metadata file contains maximum lengths calculated with your `config.yml` and total number of elements in each dataset, for static shape training and precalculated steps per epoch.
6. For training, see `train.py` files in the [example folder](./examples) to see the options
7. For testing, see `test.py` files in the [example folder](./examples) to see the options. **Note:** Testing is currently not supported for TPUs. It will print nothing other than the progress bar in the console, but it will store the predicted transcripts to the file `output.tsv` and then calculate the metrics from that file.

**FYI**: Keras builtin training uses **infinite dataset**, which avoids the potential last partial batch.

See [examples](./examples/) for some predefined ASR models and results

## Corpus Sources and Pretrained Models

For pretrained models, go to [drive](https://drive.google.com/drive/folders/1BD0AK30n8hc-yR28C5FW3LqzZxtLOQfl?usp=sharing)

### English

|   **Name**   |                             **Source**                             | **Hours** |
| :----------: | :----------------------------------------------------------------: | :-------: |
| LibriSpeech  |              [LibriSpeech](http://www.openslr.org/12)              |   970h    |
| Common Voice | [https://commonvoice.mozilla.org](https://commonvoice.mozilla.org) |   1932h   |

### Vietnamese

|                **Name**                |                                       **Source**                                       | **Hours** |
| :------------------------------------: | :------------------------------------------------------------------------------------: | :-------: |
|                 Vivos                  |          [https://ailab.hcmus.edu.vn/vivos](https://ailab.hcmus.edu.vn/vivos)          |    15h    |
|          InfoRe Technology 1           |  [InfoRe1 (passwd: BroughtToYouByInfoRe)](https://files.huylenguyen.com/25hours.zip)   |    25h    |
| InfoRe Technology 2 (used in VLSP2019) | [InfoRe2 (passwd: BroughtToYouByInfoRe)](https://files.huylenguyen.com/audiobooks.zip) |   415h    |

### German

|   **Name**   |                             **Source**                              | **Hours** |
| :----------: | :-----------------------------------------------------------------: | :-------: |
| Common Voice | [https://commonvoice.mozilla.org/](https://commonvoice.mozilla.org) |   750h    |

## References & Credits

1. [NVIDIA OpenSeq2Seq Toolkit](https://github.com/NVIDIA/OpenSeq2Seq)
2. [https://github.com/noahchalifour/warp-transducer](https://github.com/noahchalifour/warp-transducer)
3. [Sequence Transduction with Recurrent Neural Network](https://arxiv.org/abs/1211.3711)
4. [End-to-End Speech Processing Toolkit in PyTorch](https://github.com/espnet/espnet)
5. [https://github.com/iankur/ContextNet](https://github.com/iankur/ContextNet)

## Contact

Huy Le Nguyen

Email: nlhuy.cs.16@gmail.com




%package -n python3-TensorFlowASR
Summary:	Almost State-of-the-art Automatic Speech Recognition using Tensorflow 2
Provides:	python-TensorFlowASR
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-TensorFlowASR
<h1 align="center">
<p>TensorFlowASR :zap:</p>
<p align="center">
<a href="https://github.com/TensorSpeech/TensorFlowASR/blob/main/LICENSE">
  <img alt="GitHub" src="https://img.shields.io/github/license/TensorSpeech/TensorFlowASR?logo=apache&logoColor=green">
</a>
<img alt="python" src="https://img.shields.io/badge/python-%3E%3D3.6-blue?logo=python">
<img alt="tensorflow" src="https://img.shields.io/badge/tensorflow-%3E%3D2.5.1-orange?logo=tensorflow">
<a href="https://pypi.org/project/TensorFlowASR/">
  <img alt="PyPI" src="https://img.shields.io/pypi/v/TensorFlowASR?color=%234285F4&label=release&logo=pypi&logoColor=%234285F4">
</a>
</p>
</h1>
<h2 align="center">
<p>Almost State-of-the-art Automatic Speech Recognition in Tensorflow 2</p>
</h2>

<p align="center">
TensorFlowASR implements some automatic speech recognition architectures such as DeepSpeech2, Jasper, RNN Transducer, ContextNet, Conformer, etc. These models can be converted to TFLite to reduce memory and computation for deployment :smile:
</p>

## What's New?

- (04/17/2021) Refactor repository with new version 1.x
- (02/16/2021) Supported for TPU training
- (12/27/2020) Supported _naive_ token level timestamp, see [demo](./examples/demonstration/conformer.py) with flag `--timestamp`
- (12/17/2020) Supported ContextNet [http://arxiv.org/abs/2005.03191](http://arxiv.org/abs/2005.03191)
- (12/12/2020) Add support for using masking
- (11/14/2020) Supported Gradient Accumulation for Training in Larger Batch Size

## Table of Contents

<!-- TOC -->

- [What's New?](#whats-new)
- [Table of Contents](#table-of-contents)
- [:yum: Supported Models](#yum-supported-models)
  - [Baselines](#baselines)
  - [Publications](#publications)
- [Installation](#installation)
  - [Installing from source (recommended)](#installing-from-source-recommended)
  - [Installing via PyPi](#installing-via-pypi)
  - [Running in a container](#running-in-a-container)
- [Setup training and testing](#setup-training-and-testing)
- [TFLite Convertion](#tflite-convertion)
- [Features Extraction](#features-extraction)
- [Augmentations](#augmentations)
- [Training & Testing Tutorial](#training--testing-tutorial)
- [Corpus Sources and Pretrained Models](#corpus-sources-and-pretrained-models)
  - [English](#english)
  - [Vietnamese](#vietnamese)
  - [German](#german)
- [References & Credits](#references--credits)
- [Contact](#contact)

<!-- /TOC -->

## :yum: Supported Models

### Baselines

- **Transducer Models** (End2end models using RNNT Loss for training, currently supported Conformer, ContextNet, Streaming Transducer)
- **CTCModel** (End2end models using CTC Loss for training, currently supported DeepSpeech2, Jasper)

### Publications

- **Conformer Transducer** (Reference: [https://arxiv.org/abs/2005.08100](https://arxiv.org/abs/2005.08100))
  See [examples/conformer](./examples/conformer)
- **Streaming Transducer** (Reference: [https://arxiv.org/abs/1811.06621](https://arxiv.org/abs/1811.06621))
  See [examples/streaming_transducer](./examples/streaming_transducer)
- **ContextNet** (Reference: [http://arxiv.org/abs/2005.03191](http://arxiv.org/abs/2005.03191))
  See [examples/contextnet](./examples/contextnet)
- **Deep Speech 2** (Reference: [https://arxiv.org/abs/1512.02595](https://arxiv.org/abs/1512.02595))
  See [examples/deepspeech2](./examples/deepspeech2)
- **Jasper** (Reference: [https://arxiv.org/abs/1904.03288](https://arxiv.org/abs/1904.03288))
  See [examples/jasper](./examples/jasper)

## Installation

For training and testing, you should use `git clone` for installing necessary packages from other authors (`ctc_decoders`, `rnnt_loss`, etc.)

### Installing from source (recommended)

```bash
git clone https://github.com/TensorSpeech/TensorFlowASR.git
cd TensorFlowASR
# Tensorflow 2.x (with 2.x.x >= 2.5.1)
pip3 install -e ".[tf2.x]" # or ".[tf2.x-gpu]"
```

For anaconda3:

```bash
conda create -y -n tfasr tensorflow-gpu python=3.8 # tensorflow if using CPU, this makes sure conda install all dependencies for tensorflow
conda activate tfasr
pip install -U tensorflow-gpu # upgrade to latest version of tensorflow
git clone https://github.com/TensorSpeech/TensorFlowASR.git
cd TensorFlowASR
# Tensorflow 2.x (with 2.x.x >= 2.5.1)
pip3 install -e ".[tf2.x]" # or ".[tf2.x-gpu]"
```

### Installing via PyPi

```bash
# Tensorflow 2.x (with 2.x >= 2.3)
pip3 install -U "TensorFlowASR[tf2.x]" # or pip3 install -U "TensorFlowASR[tf2.x-gpu]"
```


### Running in a container

```bash
docker-compose up -d
```

## Setup training and testing

- For datasets, see [datasets](./tensorflow_asr/datasets/README.md)

- For _training, testing and using_ **CTC Models**, run `./scripts/install_ctc_decoders.sh`

- For _training_ **Transducer Models** with RNNT Loss in TF, make sure that [warp-transducer](https://github.com/HawkAaron/warp-transducer) **is not installed** (by simply run `pip3 uninstall warprnnt-tensorflow`) (**Recommended**)

- For _training_ **Transducer Models** with RNNT Loss from [warp-transducer](https://github.com/HawkAaron/warp-transducer), run `export CUDA_HOME=/usr/local/cuda && ./scripts/install_rnnt_loss.sh` (**Note**: only `export CUDA_HOME` when you have CUDA)

- For _mixed precision training_, use flag `--mxp` when running python scripts from [examples](./examples)

- For _enabling XLA_, run `TF_XLA_FLAGS=--tf_xla_auto_jit=2 python3 $path_to_py_script`)

- For _hiding warnings_, run `export TF_CPP_MIN_LOG_LEVEL=2` before running any examples

## TFLite Convertion

After converting to tflite, the tflite model is like a function that transforms directly from an **audio signal** to **unicode code points**, then we can convert unicode points to string.

1. Install `tf-nightly` using `pip install tf-nightly`
2. Build a model with the same architecture as the trained model _(if model has tflite argument, you must set it to True)_, then load the weights from trained model to the built model
3. Load `TFSpeechFeaturizer` and `TextFeaturizer` to model using function `add_featurizers`
4. Convert model's function to tflite as follows:

```python
func = model.make_tflite_function(**options) # options are the arguments of the function
concrete_func = func.get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.experimental_new_converter = True
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
                                       tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()
```

5. Save the converted tflite model as follows:

```python
if not os.path.exists(os.path.dirname(tflite_path)):
    os.makedirs(os.path.dirname(tflite_path))
with open(tflite_path, "wb") as tflite_out:
    tflite_out.write(tflite_model)
```

5. Then the `.tflite` model is ready to be deployed

## Features Extraction

See [features_extraction](./tensorflow_asr/featurizers/README.md)

## Augmentations

See [augmentations](./tensorflow_asr/augmentations/README.md)

## Training & Testing Tutorial

1. Define config YAML file, see the `config.yml` files in the [example folder](./examples) for reference (you can copy and modify values such as parameters, paths, etc.. to match your local machine configuration)
2. Download your corpus (a.k.a datasets) and create a script to generate `transcripts.tsv` files from your corpus (this is general format used in this project because each dataset has different format). For more detail, see [datasets](./tensorflow_asr/datasets/README.md). **Note:** Make sure your data contain only characters in your language, for example, english has `a` to `z` and `'`. **Do not use `cache` if your dataset size is not fit in the RAM**.
3. [Optional] Generate TFRecords to use `tf.data.TFRecordDataset` for better performance by using the script [create_tfrecords.py](./scripts/create_tfrecords.py)
4. Create vocabulary file (characters or subwords/wordpieces) by defining `language.characters`, using the scripts [generate_vocab_subwords.py](./scripts/generate_vocab_subwords.py) or [generate_vocab_sentencepiece.py](./scripts/generate_vocab_sentencepiece.py). There're predefined ones in [vocabularies](./vocabularies)
5. [Optional] Generate metadata file for your dataset by using script [generate_metadata.py](./scripts/generate_metadata.py). This metadata file contains maximum lengths calculated with your `config.yml` and total number of elements in each dataset, for static shape training and precalculated steps per epoch.
6. For training, see `train.py` files in the [example folder](./examples) to see the options
7. For testing, see `test.py` files in the [example folder](./examples) to see the options. **Note:** Testing is currently not supported for TPUs. It will print nothing other than the progress bar in the console, but it will store the predicted transcripts to the file `output.tsv` and then calculate the metrics from that file.

**FYI**: Keras builtin training uses **infinite dataset**, which avoids the potential last partial batch.

See [examples](./examples/) for some predefined ASR models and results

## Corpus Sources and Pretrained Models

For pretrained models, go to [drive](https://drive.google.com/drive/folders/1BD0AK30n8hc-yR28C5FW3LqzZxtLOQfl?usp=sharing)

### English

|   **Name**   |                             **Source**                             | **Hours** |
| :----------: | :----------------------------------------------------------------: | :-------: |
| LibriSpeech  |              [LibriSpeech](http://www.openslr.org/12)              |   970h    |
| Common Voice | [https://commonvoice.mozilla.org](https://commonvoice.mozilla.org) |   1932h   |

### Vietnamese

|                **Name**                |                                       **Source**                                       | **Hours** |
| :------------------------------------: | :------------------------------------------------------------------------------------: | :-------: |
|                 Vivos                  |          [https://ailab.hcmus.edu.vn/vivos](https://ailab.hcmus.edu.vn/vivos)          |    15h    |
|          InfoRe Technology 1           |  [InfoRe1 (passwd: BroughtToYouByInfoRe)](https://files.huylenguyen.com/25hours.zip)   |    25h    |
| InfoRe Technology 2 (used in VLSP2019) | [InfoRe2 (passwd: BroughtToYouByInfoRe)](https://files.huylenguyen.com/audiobooks.zip) |   415h    |

### German

|   **Name**   |                             **Source**                              | **Hours** |
| :----------: | :-----------------------------------------------------------------: | :-------: |
| Common Voice | [https://commonvoice.mozilla.org/](https://commonvoice.mozilla.org) |   750h    |

## References & Credits

1. [NVIDIA OpenSeq2Seq Toolkit](https://github.com/NVIDIA/OpenSeq2Seq)
2. [https://github.com/noahchalifour/warp-transducer](https://github.com/noahchalifour/warp-transducer)
3. [Sequence Transduction with Recurrent Neural Network](https://arxiv.org/abs/1211.3711)
4. [End-to-End Speech Processing Toolkit in PyTorch](https://github.com/espnet/espnet)
5. [https://github.com/iankur/ContextNet](https://github.com/iankur/ContextNet)

## Contact

Huy Le Nguyen

Email: nlhuy.cs.16@gmail.com




%package help
Summary:	Development documents and examples for TensorFlowASR
Provides:	python3-TensorFlowASR-doc
%description help
<h1 align="center">
<p>TensorFlowASR :zap:</p>
<p align="center">
<a href="https://github.com/TensorSpeech/TensorFlowASR/blob/main/LICENSE">
  <img alt="GitHub" src="https://img.shields.io/github/license/TensorSpeech/TensorFlowASR?logo=apache&logoColor=green">
</a>
<img alt="python" src="https://img.shields.io/badge/python-%3E%3D3.6-blue?logo=python">
<img alt="tensorflow" src="https://img.shields.io/badge/tensorflow-%3E%3D2.5.1-orange?logo=tensorflow">
<a href="https://pypi.org/project/TensorFlowASR/">
  <img alt="PyPI" src="https://img.shields.io/pypi/v/TensorFlowASR?color=%234285F4&label=release&logo=pypi&logoColor=%234285F4">
</a>
</p>
</h1>
<h2 align="center">
<p>Almost State-of-the-art Automatic Speech Recognition in Tensorflow 2</p>
</h2>

<p align="center">
TensorFlowASR implements some automatic speech recognition architectures such as DeepSpeech2, Jasper, RNN Transducer, ContextNet, Conformer, etc. These models can be converted to TFLite to reduce memory and computation for deployment :smile:
</p>

## What's New?

- (04/17/2021) Refactor repository with new version 1.x
- (02/16/2021) Supported for TPU training
- (12/27/2020) Supported _naive_ token level timestamp, see [demo](./examples/demonstration/conformer.py) with flag `--timestamp`
- (12/17/2020) Supported ContextNet [http://arxiv.org/abs/2005.03191](http://arxiv.org/abs/2005.03191)
- (12/12/2020) Add support for using masking
- (11/14/2020) Supported Gradient Accumulation for Training in Larger Batch Size

## Table of Contents

<!-- TOC -->

- [What's New?](#whats-new)
- [Table of Contents](#table-of-contents)
- [:yum: Supported Models](#yum-supported-models)
  - [Baselines](#baselines)
  - [Publications](#publications)
- [Installation](#installation)
  - [Installing from source (recommended)](#installing-from-source-recommended)
  - [Installing via PyPi](#installing-via-pypi)
  - [Running in a container](#running-in-a-container)
- [Setup training and testing](#setup-training-and-testing)
- [TFLite Convertion](#tflite-convertion)
- [Features Extraction](#features-extraction)
- [Augmentations](#augmentations)
- [Training & Testing Tutorial](#training--testing-tutorial)
- [Corpus Sources and Pretrained Models](#corpus-sources-and-pretrained-models)
  - [English](#english)
  - [Vietnamese](#vietnamese)
  - [German](#german)
- [References & Credits](#references--credits)
- [Contact](#contact)

<!-- /TOC -->

## :yum: Supported Models

### Baselines

- **Transducer Models** (End2end models using RNNT Loss for training, currently supported Conformer, ContextNet, Streaming Transducer)
- **CTCModel** (End2end models using CTC Loss for training, currently supported DeepSpeech2, Jasper)

### Publications

- **Conformer Transducer** (Reference: [https://arxiv.org/abs/2005.08100](https://arxiv.org/abs/2005.08100))
  See [examples/conformer](./examples/conformer)
- **Streaming Transducer** (Reference: [https://arxiv.org/abs/1811.06621](https://arxiv.org/abs/1811.06621))
  See [examples/streaming_transducer](./examples/streaming_transducer)
- **ContextNet** (Reference: [http://arxiv.org/abs/2005.03191](http://arxiv.org/abs/2005.03191))
  See [examples/contextnet](./examples/contextnet)
- **Deep Speech 2** (Reference: [https://arxiv.org/abs/1512.02595](https://arxiv.org/abs/1512.02595))
  See [examples/deepspeech2](./examples/deepspeech2)
- **Jasper** (Reference: [https://arxiv.org/abs/1904.03288](https://arxiv.org/abs/1904.03288))
  See [examples/jasper](./examples/jasper)

## Installation

For training and testing, you should use `git clone` for installing necessary packages from other authors (`ctc_decoders`, `rnnt_loss`, etc.)

### Installing from source (recommended)

```bash
git clone https://github.com/TensorSpeech/TensorFlowASR.git
cd TensorFlowASR
# Tensorflow 2.x (with 2.x.x >= 2.5.1)
pip3 install -e ".[tf2.x]" # or ".[tf2.x-gpu]"
```

For anaconda3:

```bash
conda create -y -n tfasr tensorflow-gpu python=3.8 # tensorflow if using CPU, this makes sure conda install all dependencies for tensorflow
conda activate tfasr
pip install -U tensorflow-gpu # upgrade to latest version of tensorflow
git clone https://github.com/TensorSpeech/TensorFlowASR.git
cd TensorFlowASR
# Tensorflow 2.x (with 2.x.x >= 2.5.1)
pip3 install -e ".[tf2.x]" # or ".[tf2.x-gpu]"
```

### Installing via PyPi

```bash
# Tensorflow 2.x (with 2.x >= 2.3)
pip3 install -U "TensorFlowASR[tf2.x]" # or pip3 install -U "TensorFlowASR[tf2.x-gpu]"
```


### Running in a container

```bash
docker-compose up -d
```

## Setup training and testing

- For datasets, see [datasets](./tensorflow_asr/datasets/README.md)

- For _training, testing and using_ **CTC Models**, run `./scripts/install_ctc_decoders.sh`

- For _training_ **Transducer Models** with RNNT Loss in TF, make sure that [warp-transducer](https://github.com/HawkAaron/warp-transducer) **is not installed** (by simply run `pip3 uninstall warprnnt-tensorflow`) (**Recommended**)

- For _training_ **Transducer Models** with RNNT Loss from [warp-transducer](https://github.com/HawkAaron/warp-transducer), run `export CUDA_HOME=/usr/local/cuda && ./scripts/install_rnnt_loss.sh` (**Note**: only `export CUDA_HOME` when you have CUDA)

- For _mixed precision training_, use flag `--mxp` when running python scripts from [examples](./examples)

- For _enabling XLA_, run `TF_XLA_FLAGS=--tf_xla_auto_jit=2 python3 $path_to_py_script`)

- For _hiding warnings_, run `export TF_CPP_MIN_LOG_LEVEL=2` before running any examples

## TFLite Convertion

After converting to tflite, the tflite model is like a function that transforms directly from an **audio signal** to **unicode code points**, then we can convert unicode points to string.

1. Install `tf-nightly` using `pip install tf-nightly`
2. Build a model with the same architecture as the trained model _(if model has tflite argument, you must set it to True)_, then load the weights from trained model to the built model
3. Load `TFSpeechFeaturizer` and `TextFeaturizer` to model using function `add_featurizers`
4. Convert model's function to tflite as follows:

```python
func = model.make_tflite_function(**options) # options are the arguments of the function
concrete_func = func.get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.experimental_new_converter = True
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,
                                       tf.lite.OpsSet.SELECT_TF_OPS]
tflite_model = converter.convert()
```

5. Save the converted tflite model as follows:

```python
if not os.path.exists(os.path.dirname(tflite_path)):
    os.makedirs(os.path.dirname(tflite_path))
with open(tflite_path, "wb") as tflite_out:
    tflite_out.write(tflite_model)
```

5. Then the `.tflite` model is ready to be deployed

## Features Extraction

See [features_extraction](./tensorflow_asr/featurizers/README.md)

## Augmentations

See [augmentations](./tensorflow_asr/augmentations/README.md)

## Training & Testing Tutorial

1. Define config YAML file, see the `config.yml` files in the [example folder](./examples) for reference (you can copy and modify values such as parameters, paths, etc.. to match your local machine configuration)
2. Download your corpus (a.k.a datasets) and create a script to generate `transcripts.tsv` files from your corpus (this is general format used in this project because each dataset has different format). For more detail, see [datasets](./tensorflow_asr/datasets/README.md). **Note:** Make sure your data contain only characters in your language, for example, english has `a` to `z` and `'`. **Do not use `cache` if your dataset size is not fit in the RAM**.
3. [Optional] Generate TFRecords to use `tf.data.TFRecordDataset` for better performance by using the script [create_tfrecords.py](./scripts/create_tfrecords.py)
4. Create vocabulary file (characters or subwords/wordpieces) by defining `language.characters`, using the scripts [generate_vocab_subwords.py](./scripts/generate_vocab_subwords.py) or [generate_vocab_sentencepiece.py](./scripts/generate_vocab_sentencepiece.py). There're predefined ones in [vocabularies](./vocabularies)
5. [Optional] Generate metadata file for your dataset by using script [generate_metadata.py](./scripts/generate_metadata.py). This metadata file contains maximum lengths calculated with your `config.yml` and total number of elements in each dataset, for static shape training and precalculated steps per epoch.
6. For training, see `train.py` files in the [example folder](./examples) to see the options
7. For testing, see `test.py` files in the [example folder](./examples) to see the options. **Note:** Testing is currently not supported for TPUs. It will print nothing other than the progress bar in the console, but it will store the predicted transcripts to the file `output.tsv` and then calculate the metrics from that file.

**FYI**: Keras builtin training uses **infinite dataset**, which avoids the potential last partial batch.

See [examples](./examples/) for some predefined ASR models and results

## Corpus Sources and Pretrained Models

For pretrained models, go to [drive](https://drive.google.com/drive/folders/1BD0AK30n8hc-yR28C5FW3LqzZxtLOQfl?usp=sharing)

### English

|   **Name**   |                             **Source**                             | **Hours** |
| :----------: | :----------------------------------------------------------------: | :-------: |
| LibriSpeech  |              [LibriSpeech](http://www.openslr.org/12)              |   970h    |
| Common Voice | [https://commonvoice.mozilla.org](https://commonvoice.mozilla.org) |   1932h   |

### Vietnamese

|                **Name**                |                                       **Source**                                       | **Hours** |
| :------------------------------------: | :------------------------------------------------------------------------------------: | :-------: |
|                 Vivos                  |          [https://ailab.hcmus.edu.vn/vivos](https://ailab.hcmus.edu.vn/vivos)          |    15h    |
|          InfoRe Technology 1           |  [InfoRe1 (passwd: BroughtToYouByInfoRe)](https://files.huylenguyen.com/25hours.zip)   |    25h    |
| InfoRe Technology 2 (used in VLSP2019) | [InfoRe2 (passwd: BroughtToYouByInfoRe)](https://files.huylenguyen.com/audiobooks.zip) |   415h    |

### German

|   **Name**   |                             **Source**                              | **Hours** |
| :----------: | :-----------------------------------------------------------------: | :-------: |
| Common Voice | [https://commonvoice.mozilla.org/](https://commonvoice.mozilla.org) |   750h    |

## References & Credits

1. [NVIDIA OpenSeq2Seq Toolkit](https://github.com/NVIDIA/OpenSeq2Seq)
2. [https://github.com/noahchalifour/warp-transducer](https://github.com/noahchalifour/warp-transducer)
3. [Sequence Transduction with Recurrent Neural Network](https://arxiv.org/abs/1211.3711)
4. [End-to-End Speech Processing Toolkit in PyTorch](https://github.com/espnet/espnet)
5. [https://github.com/iankur/ContextNet](https://github.com/iankur/ContextNet)

## Contact

Huy Le Nguyen

Email: nlhuy.cs.16@gmail.com




%prep
%autosetup -n TensorFlowASR-1.0.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-TensorFlowASR -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.3-1
- Package Spec generated