1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
%global _empty_manifest_terminate_build 0
Name: python-tensorflowonspark
Version: 2.2.5
Release: 1
Summary: Deep learning with TensorFlow on Apache Spark clusters
License: Apache 2.0
URL: https://github.com/yahoo/TensorFlowOnSpark
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/e3/e75b54b6e5d77b8a7dff55908655b5684d7b48cc04e7e66f359a37fb3202/tensorflowonspark-2.2.5.tar.gz
BuildArch: noarch
%description
<!--
Copyright 2019 Yahoo Inc.
Licensed under the terms of the Apache 2.0 license.
Please see LICENSE file in the project root for terms.
-->
# TensorFlowOnSpark
> _TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark
clusters._
[](https://cd.screwdriver.cd/pipelines/6384)
[](https://pypi.org/project/tensorflowonspark/)
[](https://img.shields.io/pypi/dm/tensorflowonspark.svg)
[](https://yahoo.github.io/TensorFlowOnSpark/)
By combining salient features from the [TensorFlow](https://www.tensorflow.org) deep learning framework with [Apache Spark](http://spark.apache.org) and [Apache Hadoop](http://hadoop.apache.org), TensorFlowOnSpark enables distributed
deep learning on a cluster of GPU and CPU servers.
It enables both distributed TensorFlow training and
inferencing on Spark clusters, with a goal to minimize the amount
of code changes required to run existing TensorFlow programs on a
shared grid. Its Spark-compatible API helps manage the TensorFlow
cluster with the following steps:
1. **Startup** - launches the Tensorflow main function on the executors, along with listeners for data/control messages.
1. **Data ingestion**
- **InputMode.TENSORFLOW** - leverages TensorFlow's built-in APIs to read data files directly from HDFS.
- **InputMode.SPARK** - sends Spark RDD data to the TensorFlow nodes via a `TFNode.DataFeed` class. Note that we leverage the [Hadoop Input/Output Format](https://github.com/tensorflow/ecosystem/tree/master/hadoop) to access TFRecords on HDFS.
1. **Shutdown** - shuts down the Tensorflow workers and PS nodes on the executors.
## Table of Contents
- [Background](#background)
- [Install](#install)
- [Usage](#usage)
- [API](#api)
- [Contribute](#contribute)
- [License](#license)
## Background
TensorFlowOnSpark was developed by Yahoo for large-scale distributed
deep learning on our Hadoop clusters in Yahoo's private cloud.
TensorFlowOnSpark provides some important benefits (see [our
blog](https://developer.yahoo.com/blogs/157196317141/))
over alternative deep learning solutions.
* Easily migrate existing TensorFlow programs with <10 lines of code change.
* Support all TensorFlow functionalities: synchronous/asynchronous training, model/data parallelism, inferencing and TensorBoard.
* Server-to-server direct communication achieves faster learning when available.
* Allow datasets on HDFS and other sources pushed by Spark or pulled by TensorFlow.
* Easily integrate with your existing Spark data processing pipelines.
* Easily deployed on cloud or on-premise and on CPUs or GPUs.
## Install
TensorFlowOnSpark is provided as a pip package, which can be installed on single machines via:
```
# for tensorflow>=2.0.0
pip install tensorflowonspark
# for tensorflow<2.0.0
pip install tensorflowonspark==1.4.4
```
For distributed clusters, please see our [wiki site](../../wiki) for detailed documentation for specific environments, such as our getting started guides for [single-node Spark Standalone](https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_Standalone), [YARN clusters](../../wiki/GetStarted_YARN) and [AWS EC2](../../wiki/GetStarted_EC2). Note: the Windows operating system is not currently supported due to [this issue](https://github.com/yahoo/TensorFlowOnSpark/issues/36).
## Usage
To use TensorFlowOnSpark with an existing TensorFlow application, you can follow our [Conversion Guide](../../wiki/Conversion-Guide) to describe the required changes. Additionally, our [wiki site](../../wiki) has pointers to some presentations which provide an overview of the platform.
**Note: since TensorFlow 2.x breaks API compatibility with TensorFlow 1.x, the examples have been updated accordingly. If you are using TensorFlow 1.x, you will need to checkout the `v1.4.4` tag for compatible examples and instructions.**
## API
[API Documentation](https://yahoo.github.io/TensorFlowOnSpark/) is automatically generated from the code.
## Contribute
Please join the [TensorFlowOnSpark user group](https://groups.google.com/forum/#!forum/TensorFlowOnSpark-users) for discussions and questions. If you have a question, please review our [FAQ](../../wiki/Frequently-Asked-Questions) before posting.
Contributions are always welcome. For more information, please see our [guide for getting involved](Contributing.md).
## License
The use and distribution terms for this software are covered by the Apache 2.0 license.
See [LICENSE](LICENSE) file for terms.
%package -n python3-tensorflowonspark
Summary: Deep learning with TensorFlow on Apache Spark clusters
Provides: python-tensorflowonspark
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-tensorflowonspark
<!--
Copyright 2019 Yahoo Inc.
Licensed under the terms of the Apache 2.0 license.
Please see LICENSE file in the project root for terms.
-->
# TensorFlowOnSpark
> _TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark
clusters._
[](https://cd.screwdriver.cd/pipelines/6384)
[](https://pypi.org/project/tensorflowonspark/)
[](https://img.shields.io/pypi/dm/tensorflowonspark.svg)
[](https://yahoo.github.io/TensorFlowOnSpark/)
By combining salient features from the [TensorFlow](https://www.tensorflow.org) deep learning framework with [Apache Spark](http://spark.apache.org) and [Apache Hadoop](http://hadoop.apache.org), TensorFlowOnSpark enables distributed
deep learning on a cluster of GPU and CPU servers.
It enables both distributed TensorFlow training and
inferencing on Spark clusters, with a goal to minimize the amount
of code changes required to run existing TensorFlow programs on a
shared grid. Its Spark-compatible API helps manage the TensorFlow
cluster with the following steps:
1. **Startup** - launches the Tensorflow main function on the executors, along with listeners for data/control messages.
1. **Data ingestion**
- **InputMode.TENSORFLOW** - leverages TensorFlow's built-in APIs to read data files directly from HDFS.
- **InputMode.SPARK** - sends Spark RDD data to the TensorFlow nodes via a `TFNode.DataFeed` class. Note that we leverage the [Hadoop Input/Output Format](https://github.com/tensorflow/ecosystem/tree/master/hadoop) to access TFRecords on HDFS.
1. **Shutdown** - shuts down the Tensorflow workers and PS nodes on the executors.
## Table of Contents
- [Background](#background)
- [Install](#install)
- [Usage](#usage)
- [API](#api)
- [Contribute](#contribute)
- [License](#license)
## Background
TensorFlowOnSpark was developed by Yahoo for large-scale distributed
deep learning on our Hadoop clusters in Yahoo's private cloud.
TensorFlowOnSpark provides some important benefits (see [our
blog](https://developer.yahoo.com/blogs/157196317141/))
over alternative deep learning solutions.
* Easily migrate existing TensorFlow programs with <10 lines of code change.
* Support all TensorFlow functionalities: synchronous/asynchronous training, model/data parallelism, inferencing and TensorBoard.
* Server-to-server direct communication achieves faster learning when available.
* Allow datasets on HDFS and other sources pushed by Spark or pulled by TensorFlow.
* Easily integrate with your existing Spark data processing pipelines.
* Easily deployed on cloud or on-premise and on CPUs or GPUs.
## Install
TensorFlowOnSpark is provided as a pip package, which can be installed on single machines via:
```
# for tensorflow>=2.0.0
pip install tensorflowonspark
# for tensorflow<2.0.0
pip install tensorflowonspark==1.4.4
```
For distributed clusters, please see our [wiki site](../../wiki) for detailed documentation for specific environments, such as our getting started guides for [single-node Spark Standalone](https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_Standalone), [YARN clusters](../../wiki/GetStarted_YARN) and [AWS EC2](../../wiki/GetStarted_EC2). Note: the Windows operating system is not currently supported due to [this issue](https://github.com/yahoo/TensorFlowOnSpark/issues/36).
## Usage
To use TensorFlowOnSpark with an existing TensorFlow application, you can follow our [Conversion Guide](../../wiki/Conversion-Guide) to describe the required changes. Additionally, our [wiki site](../../wiki) has pointers to some presentations which provide an overview of the platform.
**Note: since TensorFlow 2.x breaks API compatibility with TensorFlow 1.x, the examples have been updated accordingly. If you are using TensorFlow 1.x, you will need to checkout the `v1.4.4` tag for compatible examples and instructions.**
## API
[API Documentation](https://yahoo.github.io/TensorFlowOnSpark/) is automatically generated from the code.
## Contribute
Please join the [TensorFlowOnSpark user group](https://groups.google.com/forum/#!forum/TensorFlowOnSpark-users) for discussions and questions. If you have a question, please review our [FAQ](../../wiki/Frequently-Asked-Questions) before posting.
Contributions are always welcome. For more information, please see our [guide for getting involved](Contributing.md).
## License
The use and distribution terms for this software are covered by the Apache 2.0 license.
See [LICENSE](LICENSE) file for terms.
%package help
Summary: Development documents and examples for tensorflowonspark
Provides: python3-tensorflowonspark-doc
%description help
<!--
Copyright 2019 Yahoo Inc.
Licensed under the terms of the Apache 2.0 license.
Please see LICENSE file in the project root for terms.
-->
# TensorFlowOnSpark
> _TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark
clusters._
[](https://cd.screwdriver.cd/pipelines/6384)
[](https://pypi.org/project/tensorflowonspark/)
[](https://img.shields.io/pypi/dm/tensorflowonspark.svg)
[](https://yahoo.github.io/TensorFlowOnSpark/)
By combining salient features from the [TensorFlow](https://www.tensorflow.org) deep learning framework with [Apache Spark](http://spark.apache.org) and [Apache Hadoop](http://hadoop.apache.org), TensorFlowOnSpark enables distributed
deep learning on a cluster of GPU and CPU servers.
It enables both distributed TensorFlow training and
inferencing on Spark clusters, with a goal to minimize the amount
of code changes required to run existing TensorFlow programs on a
shared grid. Its Spark-compatible API helps manage the TensorFlow
cluster with the following steps:
1. **Startup** - launches the Tensorflow main function on the executors, along with listeners for data/control messages.
1. **Data ingestion**
- **InputMode.TENSORFLOW** - leverages TensorFlow's built-in APIs to read data files directly from HDFS.
- **InputMode.SPARK** - sends Spark RDD data to the TensorFlow nodes via a `TFNode.DataFeed` class. Note that we leverage the [Hadoop Input/Output Format](https://github.com/tensorflow/ecosystem/tree/master/hadoop) to access TFRecords on HDFS.
1. **Shutdown** - shuts down the Tensorflow workers and PS nodes on the executors.
## Table of Contents
- [Background](#background)
- [Install](#install)
- [Usage](#usage)
- [API](#api)
- [Contribute](#contribute)
- [License](#license)
## Background
TensorFlowOnSpark was developed by Yahoo for large-scale distributed
deep learning on our Hadoop clusters in Yahoo's private cloud.
TensorFlowOnSpark provides some important benefits (see [our
blog](https://developer.yahoo.com/blogs/157196317141/))
over alternative deep learning solutions.
* Easily migrate existing TensorFlow programs with <10 lines of code change.
* Support all TensorFlow functionalities: synchronous/asynchronous training, model/data parallelism, inferencing and TensorBoard.
* Server-to-server direct communication achieves faster learning when available.
* Allow datasets on HDFS and other sources pushed by Spark or pulled by TensorFlow.
* Easily integrate with your existing Spark data processing pipelines.
* Easily deployed on cloud or on-premise and on CPUs or GPUs.
## Install
TensorFlowOnSpark is provided as a pip package, which can be installed on single machines via:
```
# for tensorflow>=2.0.0
pip install tensorflowonspark
# for tensorflow<2.0.0
pip install tensorflowonspark==1.4.4
```
For distributed clusters, please see our [wiki site](../../wiki) for detailed documentation for specific environments, such as our getting started guides for [single-node Spark Standalone](https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_Standalone), [YARN clusters](../../wiki/GetStarted_YARN) and [AWS EC2](../../wiki/GetStarted_EC2). Note: the Windows operating system is not currently supported due to [this issue](https://github.com/yahoo/TensorFlowOnSpark/issues/36).
## Usage
To use TensorFlowOnSpark with an existing TensorFlow application, you can follow our [Conversion Guide](../../wiki/Conversion-Guide) to describe the required changes. Additionally, our [wiki site](../../wiki) has pointers to some presentations which provide an overview of the platform.
**Note: since TensorFlow 2.x breaks API compatibility with TensorFlow 1.x, the examples have been updated accordingly. If you are using TensorFlow 1.x, you will need to checkout the `v1.4.4` tag for compatible examples and instructions.**
## API
[API Documentation](https://yahoo.github.io/TensorFlowOnSpark/) is automatically generated from the code.
## Contribute
Please join the [TensorFlowOnSpark user group](https://groups.google.com/forum/#!forum/TensorFlowOnSpark-users) for discussions and questions. If you have a question, please review our [FAQ](../../wiki/Frequently-Asked-Questions) before posting.
Contributions are always welcome. For more information, please see our [guide for getting involved](Contributing.md).
## License
The use and distribution terms for this software are covered by the Apache 2.0 license.
See [LICENSE](LICENSE) file for terms.
%prep
%autosetup -n tensorflowonspark-2.2.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-tensorflowonspark -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.5-1
- Package Spec generated
|