summaryrefslogtreecommitdiff
path: root/python-testwise.spec
blob: 174ef4fffad491c9e3d512344e99f05b2f53af43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
%global _empty_manifest_terminate_build 0
Name:		python-testwise
Version:	0.0.63
Release:	1
Summary:	A backtester (backtest helper) for testing my trading strategies.
License:	MIT License
URL:		https://github.com/aticio/testwise
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/68/2f/a32200ddc5c3390dda0460de00b824bf742f67adc5c3cf028d87acb75788/testwise-0.0.63.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-pytest

%description
# Testwise

![Publish Python 🐍 distributions 📦 to PyPI and TestPyPI](https://github.com/aticio/legitindicators/workflows/Publish%20Python%20%F0%9F%90%8D%20distributions%20%F0%9F%93%A6%20to%20PyPI%20and%20TestPyPI/badge.svg)

A backtester (backtest helper) for testing my trading strategies.

It requires a lot of manual processing and coding. Difficult to comprehend. I tried to explain the use of the library with examples as best I could. But writing such automation is quite complex.
There may still be errors. It is pretty difficult to check but I'm trying to improve the usage.

## Example Usage
```python
# Testwise is a backtester library that requires some coding knowledge
# There is no cli or interface. 
# You should directly execute necessary functions like enter_long() or exit_short()
# This is a backtesting example of Exponential Moving Average cross strategy.
# There is a 1.5 ATR stop loss level and a 1 ATR take profit level for every position. 
# Commission rate is 0.1000%. 
# Margin usage is allowed up to 5 times the main capital.
from datetime import datetime, timedelta
from testwise import Testwise
import requests
from legitindicators import ema, atr

# In this example, daily BTCUSDT kline data is used from binance
# Let's say you want to backtest your strategy for about 450 days.
# It would be useful to add some extra days to the specified time interval
# for the indicators to work properly.
# (For example 10 days of EMA won't be calculated for the first 9 days of time range)
# In this example I add 40 extra days. This value can be determined by assigning the TRIM variable
TRIM = 40
BINANCE_URL = "https://api.binance.com/api/v3/klines"
SYMBOL = "BTCUSDT"
INTERVAL = "1d"

# These are the initial paramters for backtester.
# You can find a more detailed explanation where the Testwise definition is given below.
COMMISSION = 0.001
DYNAMIC_POSITIONING = True
MARGIN_FACTOR = 5
LIMIT_FACTOR = 1
RISK_FACTOR = 1.5


def main():
    # Here we define the start time and end time of backtesting.
    # Notice usage of TRIM variable to start to backtest a few days earlier for proper indicator use.
    start_time = datetime(2020, 6, 1, 0, 0, 0)
    start_time = start_time - timedelta(days=TRIM)

    end_time = datetime(2021, 9, 1, 0, 0, 0)

    # In this example, timestamps are used. (Because binance accept timestamp)
    start_time_ts = int(datetime.timestamp(start_time) * 1000)
    end_time_ts = int(datetime.timestamp(end_time) * 1000)

    backtest(start_time_ts, end_time_ts)


def backtest(start_time, end_time):
    # Getting OHLC data
    # Example binance kline response
    # [
    #     [
    #         1499040000000,      // Open time
    #         "0.01634790",       // Open
    #         "0.80000000",       // High
    #         "0.01575800",       // Low
    #         "0.01577100",       // Close
    #         "148976.11427815",  // Volume
    #         1499644799999,      // Close time
    #         "2434.19055334",    // Quote asset volume
    #         308,                // Number of trades
    #         "1756.87402397",    // Taker buy base asset volume
    #         "28.46694368",      // Taker buy quote asset volume
    #         "17928899.62484339" // Ignore.
    #     ]
    # ]
    params = {"symbol": SYMBOL, "interval": INTERVAL, "startTime": start_time, "endTime": end_time}
    data = get_data(params)
    opn, high, low, close = get_ohlc(data)

    # Again for proper indicator usage number of bars to work on is defined as lookback
    lookback = len(data) - TRIM

    # These are simply trimmed OHLC data
    data = data[-lookback:]
    # Here, a list of close prices kept under different naming conventions than other OHL data
    # That is because I will use this close data as a parameter 
    # for Exponential Moving Average indicator and then trim the list of EMA values afterward.
    close_tmp = close[-lookback:]
    opn = opn[-lookback:]
    high = high[-lookback:]
    low = low[-lookback:]

    # Here is the calculation of ATR values historically. I use legitindicators library.
    atr_input = []
    for i, _ in enumerate(data):
        ohlc = [opn[i], high[i], low[i], close_tmp[i]]
        atr_input.append(ohlc)
    atrng = atr(atr_input, 14)

    # Backtesting operation starts here.
    # Following two for loops will check two EMA crosses in the range of 10 to 30
    for ema_length1 in range(10, 11):
        for ema_length2 in range(ema_length1 + 1, 30):
            # When the dynamic_positioning is set to True, 
            # the backtester will work as if the margin usage is available for use.
            # margin_factor indicates the margin ratio. (In this example, it is 5 times the main capital)
            # limit_factor is an ATR based take profit level. (it is 1 ATR from the position price)
            # risk_factor is an ATR based stop loss level. (it is 1.5 ATR from the position price)
            twise = Testwise(
                commission=COMMISSION,
                dynamic_positioning=DYNAMIC_POSITIONING,
                margin_factor=MARGIN_FACTOR,
                limit_factor=LIMIT_FACTOR,
                risk_factor=RISK_FACTOR
            )

            # Here, two EMA indicators are defined. I use legitindicators library.
            ema_first = ema(close, ema_length1)
            ema_second = ema(close, ema_length2)
            # List of indicator values trimmed accordingly
            ema_first = ema_first[-lookback:]
            ema_second = ema_second[-lookback:]

            # Notice that at this point:
            # open, high, low, close, ema_first and ema_second lists are all trimmed
            #  and all have the same length
            # Ready for testing

            # Start walking on the data taken from the binance.
            for i, _ in enumerate(data):
                # Exclude first price data
                if i > 1 and i < len(data) - 1:
                    # Here, data[n][0] is the open time of price data
                    # date_open is kept for use if there will be a pose to be opened the next day
                    # date_close is kept for use if the current open position is closed in this iteration
                    date_open = datetime.fromtimestamp(int(data[i+1][0] / 1000)).strftime("%Y-%m-%d %H")
                    date_close = datetime.fromtimestamp(int(data[i][0] / 1000)).strftime("%Y-%m-%d %H")

                    # Position exits
                    # On every iteration, position exits checked firstly 
                    # Below, if the current position is long (1 means long) and
                    # the ema_first crosses below the ema_second, position exit function triggered
                    if twise.pos == 1 and (ema_first[i] < ema_second[i]):
                        # exit_long function takes closing date, 
                        # closing price as open price of next day opn[i + 1],
                        # and amount to close the position. 
                        # This amount already kept in twise.current_open_pos["qty"].
                        # This value is set when opening the positions
                        twise.exit_long(date_close, opn[i + 1], twise.current_open_pos["qty"])

                    # Closing short position(-1 means short)
                    if twise.pos == -1 and (ema_first[i] > ema_second[i]):
                        twise.exit_short(date_close, opn[i + 1], twise.current_open_pos["qty"])

                    # The following if condition simulates price movements inside the bar. 
                    # This is crucial if you want to add take profit and stop loss logic to the backtester.
                    # This pine script broker emulator documentation will explain this condition more clearly:
                    # https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html?highlight=strategy#broker-emulator
                    if abs(high[i] - opn[i]) < abs(low[i] - opn[i]):
                        # Simply, If the bar’s high is closer to bar’s open than the bar’s low, 
                        # bar movement will be like: 
                        # open - high - low - close

                        # In this movement, take profit operation will be checked before stop loss. 
                        # This is because, it is assumed that the price will go up first. 
                        # For example, if both take profit and stop loss prices are exceeded, 
                        # it is assumed that first, take profit is taken, than stop loss price is reached.

                        # if current position is long, here is take profit logic:
                        # if current position is long and high is 
                        # higher than take proift price (twise.current_open_pos["tp"]) 
                        # and take profit is not taken (twise.current_open_pos["tptaken"] is False)
                        if twise.pos == 1 and high[i] > twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            # Stop loss price will be set to break even with break_even() function
                            twise.break_even()
                            # Take profit operation is simply a partially position closing operation. 
                            # Here, half of the position is closed. (twise.current_open_pos["qty"] / 2)  
                            twise.exit_long(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is long, here is stop loss logic:
                        # if current position is long and low is 
                        # lower than stop loss price (twise.current_open_pos["sl"])
                        if twise.pos == 1 and low[i] < twise.current_open_pos["sl"]:
                            twise.exit_long(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is short, here is take profit logic:
                        if twise.pos == -1 and high[i] > twise.current_open_pos["sl"]:
                            twise.exit_short(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is short, here is stop loss logic:
                        if twise.pos == -1 and low[i] < twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_short(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)
                    else:
                        # If the bar’s low is closer to bar’s open than the bar’s high, 
                        # bar movement will be like: 
                        # open - low - high - close

                        # In this movement, stop loss operation will be checked before take profit. 
                        # This is because, it is assumed that the price will go down firstly. 
                        # For example, if both take profit and stop loss prices are exceeded,
                        # it is assumed that first, stop loss is executed, 
                        # then take profit will never be reached because 
                        # if the position is fully closed with exit_long, 
                        # twise.pos value will be 0 (which means there is no open position).

                        # if the current position is long, here is stop loss logic:
                        if twise.pos == 1 and low[i] < twise.current_open_pos["sl"]:
                            twise.exit_long(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is long, here is take profit logic:
                        if twise.pos == 1 and high[i] > twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_long(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is short, here is take profit logic:
                        if twise.pos == -1 and low[i] < twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_short(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is short, here is stop loss logic:
                        if twise.pos == -1 and high[i] > twise.current_open_pos["sl"]:
                            twise.exit_short(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                    # Opening long position
                    # If there is no long positions open
                    if twise.pos != 1:
                        # If ema_first crosses over ema_second
                        if ema_first[i] > ema_second[i]:
                            # You can manually set the amount to open position. 
                            # But there will be a calculation overhead.
                            # Testwise has a built-in share calculation funciton
                            # In tihs function, share is calculated as: 
                            # share = (equity * position risk) / (atr * risk factor)
                            share = twise.calculate_share(atrng[i], custom_position_risk=0.02)
                            # Opening long position with opening date (date_open), 
                            # opening price of next day (opn[i + 1]),
                            # amount to buy, and current atr value to define take profit and stop loss prices
                            twise.entry_long(date_open, opn[i + 1], share, atrng[i])

                    if twise.pos != -1:
                        if ema_first[i] < ema_second[i]:
                            share = twise.calculate_share(atrng[i], custom_position_risk=0.02)
                            # Opening short position with opening date (date_open), 
                            # opening price of next day (opn[i + 1]),
                            # amount to buy, and current atr value to define take profit and stop loss prices
                            twise.entry_short(date_open, opn[i + 1], share, atrng[i])
            # get_result() function will give you the backtest results
            print(twise.get_result())


def get_data(params):
    r = requests.get(url=BINANCE_URL, params=params)
    data = r.json()
    return data


def get_ohlc(data):
    opn = [float(o[1]) for o in data]
    close = [float(d[4]) for d in data]
    high = [float(h[2]) for h in data]
    low = [float(lo[3]) for lo in data]

    return opn, high, low, close


if __name__ == "__main__":
    main()
```

```python
Example backtest result:
{
    'net_profit': 30557.012567638478, 
    'net_profit_percent': 30.557012567638477, 
    'gross_profit': 69163.31181062985, 
    'gross_loss': 36783.34343506002, 
    'max_drawdown': -13265.365111723615, 
    'max_drawdown_rate': 2.3035183962356918, 
    'win_rate': 53.48837209302326, 
    'risk_reward_ratio': 1.6350338129618904, 
    'profit_factor': 1.880288884906174, 
    'ehlers_ratio': 0.1311829454585705, 
    'return_on_capital': 0.26978249297565415, 
    'max_capital_required': 113265.36511172361, 
    'total_trades': 43, 
    'pearsonsr': 0.8022110890986095, 
    'number_of_winning_trades': 23, 
    'number_of_losing_trades': 20, 
    'largest_winning_trade': ('2021-01-23 03', 34417.71907928039), 
    'largest_losing_trade': ('2020-09-21 03', -4627.351985682239)}
```

## Important note: 
Do not rely on a single test result. 
At least do walkforward test with a few iterations.

## Installation

Run the following to install:

```python
pip install testwise
```




%package -n python3-testwise
Summary:	A backtester (backtest helper) for testing my trading strategies.
Provides:	python-testwise
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-testwise
# Testwise

![Publish Python 🐍 distributions 📦 to PyPI and TestPyPI](https://github.com/aticio/legitindicators/workflows/Publish%20Python%20%F0%9F%90%8D%20distributions%20%F0%9F%93%A6%20to%20PyPI%20and%20TestPyPI/badge.svg)

A backtester (backtest helper) for testing my trading strategies.

It requires a lot of manual processing and coding. Difficult to comprehend. I tried to explain the use of the library with examples as best I could. But writing such automation is quite complex.
There may still be errors. It is pretty difficult to check but I'm trying to improve the usage.

## Example Usage
```python
# Testwise is a backtester library that requires some coding knowledge
# There is no cli or interface. 
# You should directly execute necessary functions like enter_long() or exit_short()
# This is a backtesting example of Exponential Moving Average cross strategy.
# There is a 1.5 ATR stop loss level and a 1 ATR take profit level for every position. 
# Commission rate is 0.1000%. 
# Margin usage is allowed up to 5 times the main capital.
from datetime import datetime, timedelta
from testwise import Testwise
import requests
from legitindicators import ema, atr

# In this example, daily BTCUSDT kline data is used from binance
# Let's say you want to backtest your strategy for about 450 days.
# It would be useful to add some extra days to the specified time interval
# for the indicators to work properly.
# (For example 10 days of EMA won't be calculated for the first 9 days of time range)
# In this example I add 40 extra days. This value can be determined by assigning the TRIM variable
TRIM = 40
BINANCE_URL = "https://api.binance.com/api/v3/klines"
SYMBOL = "BTCUSDT"
INTERVAL = "1d"

# These are the initial paramters for backtester.
# You can find a more detailed explanation where the Testwise definition is given below.
COMMISSION = 0.001
DYNAMIC_POSITIONING = True
MARGIN_FACTOR = 5
LIMIT_FACTOR = 1
RISK_FACTOR = 1.5


def main():
    # Here we define the start time and end time of backtesting.
    # Notice usage of TRIM variable to start to backtest a few days earlier for proper indicator use.
    start_time = datetime(2020, 6, 1, 0, 0, 0)
    start_time = start_time - timedelta(days=TRIM)

    end_time = datetime(2021, 9, 1, 0, 0, 0)

    # In this example, timestamps are used. (Because binance accept timestamp)
    start_time_ts = int(datetime.timestamp(start_time) * 1000)
    end_time_ts = int(datetime.timestamp(end_time) * 1000)

    backtest(start_time_ts, end_time_ts)


def backtest(start_time, end_time):
    # Getting OHLC data
    # Example binance kline response
    # [
    #     [
    #         1499040000000,      // Open time
    #         "0.01634790",       // Open
    #         "0.80000000",       // High
    #         "0.01575800",       // Low
    #         "0.01577100",       // Close
    #         "148976.11427815",  // Volume
    #         1499644799999,      // Close time
    #         "2434.19055334",    // Quote asset volume
    #         308,                // Number of trades
    #         "1756.87402397",    // Taker buy base asset volume
    #         "28.46694368",      // Taker buy quote asset volume
    #         "17928899.62484339" // Ignore.
    #     ]
    # ]
    params = {"symbol": SYMBOL, "interval": INTERVAL, "startTime": start_time, "endTime": end_time}
    data = get_data(params)
    opn, high, low, close = get_ohlc(data)

    # Again for proper indicator usage number of bars to work on is defined as lookback
    lookback = len(data) - TRIM

    # These are simply trimmed OHLC data
    data = data[-lookback:]
    # Here, a list of close prices kept under different naming conventions than other OHL data
    # That is because I will use this close data as a parameter 
    # for Exponential Moving Average indicator and then trim the list of EMA values afterward.
    close_tmp = close[-lookback:]
    opn = opn[-lookback:]
    high = high[-lookback:]
    low = low[-lookback:]

    # Here is the calculation of ATR values historically. I use legitindicators library.
    atr_input = []
    for i, _ in enumerate(data):
        ohlc = [opn[i], high[i], low[i], close_tmp[i]]
        atr_input.append(ohlc)
    atrng = atr(atr_input, 14)

    # Backtesting operation starts here.
    # Following two for loops will check two EMA crosses in the range of 10 to 30
    for ema_length1 in range(10, 11):
        for ema_length2 in range(ema_length1 + 1, 30):
            # When the dynamic_positioning is set to True, 
            # the backtester will work as if the margin usage is available for use.
            # margin_factor indicates the margin ratio. (In this example, it is 5 times the main capital)
            # limit_factor is an ATR based take profit level. (it is 1 ATR from the position price)
            # risk_factor is an ATR based stop loss level. (it is 1.5 ATR from the position price)
            twise = Testwise(
                commission=COMMISSION,
                dynamic_positioning=DYNAMIC_POSITIONING,
                margin_factor=MARGIN_FACTOR,
                limit_factor=LIMIT_FACTOR,
                risk_factor=RISK_FACTOR
            )

            # Here, two EMA indicators are defined. I use legitindicators library.
            ema_first = ema(close, ema_length1)
            ema_second = ema(close, ema_length2)
            # List of indicator values trimmed accordingly
            ema_first = ema_first[-lookback:]
            ema_second = ema_second[-lookback:]

            # Notice that at this point:
            # open, high, low, close, ema_first and ema_second lists are all trimmed
            #  and all have the same length
            # Ready for testing

            # Start walking on the data taken from the binance.
            for i, _ in enumerate(data):
                # Exclude first price data
                if i > 1 and i < len(data) - 1:
                    # Here, data[n][0] is the open time of price data
                    # date_open is kept for use if there will be a pose to be opened the next day
                    # date_close is kept for use if the current open position is closed in this iteration
                    date_open = datetime.fromtimestamp(int(data[i+1][0] / 1000)).strftime("%Y-%m-%d %H")
                    date_close = datetime.fromtimestamp(int(data[i][0] / 1000)).strftime("%Y-%m-%d %H")

                    # Position exits
                    # On every iteration, position exits checked firstly 
                    # Below, if the current position is long (1 means long) and
                    # the ema_first crosses below the ema_second, position exit function triggered
                    if twise.pos == 1 and (ema_first[i] < ema_second[i]):
                        # exit_long function takes closing date, 
                        # closing price as open price of next day opn[i + 1],
                        # and amount to close the position. 
                        # This amount already kept in twise.current_open_pos["qty"].
                        # This value is set when opening the positions
                        twise.exit_long(date_close, opn[i + 1], twise.current_open_pos["qty"])

                    # Closing short position(-1 means short)
                    if twise.pos == -1 and (ema_first[i] > ema_second[i]):
                        twise.exit_short(date_close, opn[i + 1], twise.current_open_pos["qty"])

                    # The following if condition simulates price movements inside the bar. 
                    # This is crucial if you want to add take profit and stop loss logic to the backtester.
                    # This pine script broker emulator documentation will explain this condition more clearly:
                    # https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html?highlight=strategy#broker-emulator
                    if abs(high[i] - opn[i]) < abs(low[i] - opn[i]):
                        # Simply, If the bar’s high is closer to bar’s open than the bar’s low, 
                        # bar movement will be like: 
                        # open - high - low - close

                        # In this movement, take profit operation will be checked before stop loss. 
                        # This is because, it is assumed that the price will go up first. 
                        # For example, if both take profit and stop loss prices are exceeded, 
                        # it is assumed that first, take profit is taken, than stop loss price is reached.

                        # if current position is long, here is take profit logic:
                        # if current position is long and high is 
                        # higher than take proift price (twise.current_open_pos["tp"]) 
                        # and take profit is not taken (twise.current_open_pos["tptaken"] is False)
                        if twise.pos == 1 and high[i] > twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            # Stop loss price will be set to break even with break_even() function
                            twise.break_even()
                            # Take profit operation is simply a partially position closing operation. 
                            # Here, half of the position is closed. (twise.current_open_pos["qty"] / 2)  
                            twise.exit_long(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is long, here is stop loss logic:
                        # if current position is long and low is 
                        # lower than stop loss price (twise.current_open_pos["sl"])
                        if twise.pos == 1 and low[i] < twise.current_open_pos["sl"]:
                            twise.exit_long(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is short, here is take profit logic:
                        if twise.pos == -1 and high[i] > twise.current_open_pos["sl"]:
                            twise.exit_short(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is short, here is stop loss logic:
                        if twise.pos == -1 and low[i] < twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_short(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)
                    else:
                        # If the bar’s low is closer to bar’s open than the bar’s high, 
                        # bar movement will be like: 
                        # open - low - high - close

                        # In this movement, stop loss operation will be checked before take profit. 
                        # This is because, it is assumed that the price will go down firstly. 
                        # For example, if both take profit and stop loss prices are exceeded,
                        # it is assumed that first, stop loss is executed, 
                        # then take profit will never be reached because 
                        # if the position is fully closed with exit_long, 
                        # twise.pos value will be 0 (which means there is no open position).

                        # if the current position is long, here is stop loss logic:
                        if twise.pos == 1 and low[i] < twise.current_open_pos["sl"]:
                            twise.exit_long(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is long, here is take profit logic:
                        if twise.pos == 1 and high[i] > twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_long(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is short, here is take profit logic:
                        if twise.pos == -1 and low[i] < twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_short(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is short, here is stop loss logic:
                        if twise.pos == -1 and high[i] > twise.current_open_pos["sl"]:
                            twise.exit_short(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                    # Opening long position
                    # If there is no long positions open
                    if twise.pos != 1:
                        # If ema_first crosses over ema_second
                        if ema_first[i] > ema_second[i]:
                            # You can manually set the amount to open position. 
                            # But there will be a calculation overhead.
                            # Testwise has a built-in share calculation funciton
                            # In tihs function, share is calculated as: 
                            # share = (equity * position risk) / (atr * risk factor)
                            share = twise.calculate_share(atrng[i], custom_position_risk=0.02)
                            # Opening long position with opening date (date_open), 
                            # opening price of next day (opn[i + 1]),
                            # amount to buy, and current atr value to define take profit and stop loss prices
                            twise.entry_long(date_open, opn[i + 1], share, atrng[i])

                    if twise.pos != -1:
                        if ema_first[i] < ema_second[i]:
                            share = twise.calculate_share(atrng[i], custom_position_risk=0.02)
                            # Opening short position with opening date (date_open), 
                            # opening price of next day (opn[i + 1]),
                            # amount to buy, and current atr value to define take profit and stop loss prices
                            twise.entry_short(date_open, opn[i + 1], share, atrng[i])
            # get_result() function will give you the backtest results
            print(twise.get_result())


def get_data(params):
    r = requests.get(url=BINANCE_URL, params=params)
    data = r.json()
    return data


def get_ohlc(data):
    opn = [float(o[1]) for o in data]
    close = [float(d[4]) for d in data]
    high = [float(h[2]) for h in data]
    low = [float(lo[3]) for lo in data]

    return opn, high, low, close


if __name__ == "__main__":
    main()
```

```python
Example backtest result:
{
    'net_profit': 30557.012567638478, 
    'net_profit_percent': 30.557012567638477, 
    'gross_profit': 69163.31181062985, 
    'gross_loss': 36783.34343506002, 
    'max_drawdown': -13265.365111723615, 
    'max_drawdown_rate': 2.3035183962356918, 
    'win_rate': 53.48837209302326, 
    'risk_reward_ratio': 1.6350338129618904, 
    'profit_factor': 1.880288884906174, 
    'ehlers_ratio': 0.1311829454585705, 
    'return_on_capital': 0.26978249297565415, 
    'max_capital_required': 113265.36511172361, 
    'total_trades': 43, 
    'pearsonsr': 0.8022110890986095, 
    'number_of_winning_trades': 23, 
    'number_of_losing_trades': 20, 
    'largest_winning_trade': ('2021-01-23 03', 34417.71907928039), 
    'largest_losing_trade': ('2020-09-21 03', -4627.351985682239)}
```

## Important note: 
Do not rely on a single test result. 
At least do walkforward test with a few iterations.

## Installation

Run the following to install:

```python
pip install testwise
```




%package help
Summary:	Development documents and examples for testwise
Provides:	python3-testwise-doc
%description help
# Testwise

![Publish Python 🐍 distributions 📦 to PyPI and TestPyPI](https://github.com/aticio/legitindicators/workflows/Publish%20Python%20%F0%9F%90%8D%20distributions%20%F0%9F%93%A6%20to%20PyPI%20and%20TestPyPI/badge.svg)

A backtester (backtest helper) for testing my trading strategies.

It requires a lot of manual processing and coding. Difficult to comprehend. I tried to explain the use of the library with examples as best I could. But writing such automation is quite complex.
There may still be errors. It is pretty difficult to check but I'm trying to improve the usage.

## Example Usage
```python
# Testwise is a backtester library that requires some coding knowledge
# There is no cli or interface. 
# You should directly execute necessary functions like enter_long() or exit_short()
# This is a backtesting example of Exponential Moving Average cross strategy.
# There is a 1.5 ATR stop loss level and a 1 ATR take profit level for every position. 
# Commission rate is 0.1000%. 
# Margin usage is allowed up to 5 times the main capital.
from datetime import datetime, timedelta
from testwise import Testwise
import requests
from legitindicators import ema, atr

# In this example, daily BTCUSDT kline data is used from binance
# Let's say you want to backtest your strategy for about 450 days.
# It would be useful to add some extra days to the specified time interval
# for the indicators to work properly.
# (For example 10 days of EMA won't be calculated for the first 9 days of time range)
# In this example I add 40 extra days. This value can be determined by assigning the TRIM variable
TRIM = 40
BINANCE_URL = "https://api.binance.com/api/v3/klines"
SYMBOL = "BTCUSDT"
INTERVAL = "1d"

# These are the initial paramters for backtester.
# You can find a more detailed explanation where the Testwise definition is given below.
COMMISSION = 0.001
DYNAMIC_POSITIONING = True
MARGIN_FACTOR = 5
LIMIT_FACTOR = 1
RISK_FACTOR = 1.5


def main():
    # Here we define the start time and end time of backtesting.
    # Notice usage of TRIM variable to start to backtest a few days earlier for proper indicator use.
    start_time = datetime(2020, 6, 1, 0, 0, 0)
    start_time = start_time - timedelta(days=TRIM)

    end_time = datetime(2021, 9, 1, 0, 0, 0)

    # In this example, timestamps are used. (Because binance accept timestamp)
    start_time_ts = int(datetime.timestamp(start_time) * 1000)
    end_time_ts = int(datetime.timestamp(end_time) * 1000)

    backtest(start_time_ts, end_time_ts)


def backtest(start_time, end_time):
    # Getting OHLC data
    # Example binance kline response
    # [
    #     [
    #         1499040000000,      // Open time
    #         "0.01634790",       // Open
    #         "0.80000000",       // High
    #         "0.01575800",       // Low
    #         "0.01577100",       // Close
    #         "148976.11427815",  // Volume
    #         1499644799999,      // Close time
    #         "2434.19055334",    // Quote asset volume
    #         308,                // Number of trades
    #         "1756.87402397",    // Taker buy base asset volume
    #         "28.46694368",      // Taker buy quote asset volume
    #         "17928899.62484339" // Ignore.
    #     ]
    # ]
    params = {"symbol": SYMBOL, "interval": INTERVAL, "startTime": start_time, "endTime": end_time}
    data = get_data(params)
    opn, high, low, close = get_ohlc(data)

    # Again for proper indicator usage number of bars to work on is defined as lookback
    lookback = len(data) - TRIM

    # These are simply trimmed OHLC data
    data = data[-lookback:]
    # Here, a list of close prices kept under different naming conventions than other OHL data
    # That is because I will use this close data as a parameter 
    # for Exponential Moving Average indicator and then trim the list of EMA values afterward.
    close_tmp = close[-lookback:]
    opn = opn[-lookback:]
    high = high[-lookback:]
    low = low[-lookback:]

    # Here is the calculation of ATR values historically. I use legitindicators library.
    atr_input = []
    for i, _ in enumerate(data):
        ohlc = [opn[i], high[i], low[i], close_tmp[i]]
        atr_input.append(ohlc)
    atrng = atr(atr_input, 14)

    # Backtesting operation starts here.
    # Following two for loops will check two EMA crosses in the range of 10 to 30
    for ema_length1 in range(10, 11):
        for ema_length2 in range(ema_length1 + 1, 30):
            # When the dynamic_positioning is set to True, 
            # the backtester will work as if the margin usage is available for use.
            # margin_factor indicates the margin ratio. (In this example, it is 5 times the main capital)
            # limit_factor is an ATR based take profit level. (it is 1 ATR from the position price)
            # risk_factor is an ATR based stop loss level. (it is 1.5 ATR from the position price)
            twise = Testwise(
                commission=COMMISSION,
                dynamic_positioning=DYNAMIC_POSITIONING,
                margin_factor=MARGIN_FACTOR,
                limit_factor=LIMIT_FACTOR,
                risk_factor=RISK_FACTOR
            )

            # Here, two EMA indicators are defined. I use legitindicators library.
            ema_first = ema(close, ema_length1)
            ema_second = ema(close, ema_length2)
            # List of indicator values trimmed accordingly
            ema_first = ema_first[-lookback:]
            ema_second = ema_second[-lookback:]

            # Notice that at this point:
            # open, high, low, close, ema_first and ema_second lists are all trimmed
            #  and all have the same length
            # Ready for testing

            # Start walking on the data taken from the binance.
            for i, _ in enumerate(data):
                # Exclude first price data
                if i > 1 and i < len(data) - 1:
                    # Here, data[n][0] is the open time of price data
                    # date_open is kept for use if there will be a pose to be opened the next day
                    # date_close is kept for use if the current open position is closed in this iteration
                    date_open = datetime.fromtimestamp(int(data[i+1][0] / 1000)).strftime("%Y-%m-%d %H")
                    date_close = datetime.fromtimestamp(int(data[i][0] / 1000)).strftime("%Y-%m-%d %H")

                    # Position exits
                    # On every iteration, position exits checked firstly 
                    # Below, if the current position is long (1 means long) and
                    # the ema_first crosses below the ema_second, position exit function triggered
                    if twise.pos == 1 and (ema_first[i] < ema_second[i]):
                        # exit_long function takes closing date, 
                        # closing price as open price of next day opn[i + 1],
                        # and amount to close the position. 
                        # This amount already kept in twise.current_open_pos["qty"].
                        # This value is set when opening the positions
                        twise.exit_long(date_close, opn[i + 1], twise.current_open_pos["qty"])

                    # Closing short position(-1 means short)
                    if twise.pos == -1 and (ema_first[i] > ema_second[i]):
                        twise.exit_short(date_close, opn[i + 1], twise.current_open_pos["qty"])

                    # The following if condition simulates price movements inside the bar. 
                    # This is crucial if you want to add take profit and stop loss logic to the backtester.
                    # This pine script broker emulator documentation will explain this condition more clearly:
                    # https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html?highlight=strategy#broker-emulator
                    if abs(high[i] - opn[i]) < abs(low[i] - opn[i]):
                        # Simply, If the bar’s high is closer to bar’s open than the bar’s low, 
                        # bar movement will be like: 
                        # open - high - low - close

                        # In this movement, take profit operation will be checked before stop loss. 
                        # This is because, it is assumed that the price will go up first. 
                        # For example, if both take profit and stop loss prices are exceeded, 
                        # it is assumed that first, take profit is taken, than stop loss price is reached.

                        # if current position is long, here is take profit logic:
                        # if current position is long and high is 
                        # higher than take proift price (twise.current_open_pos["tp"]) 
                        # and take profit is not taken (twise.current_open_pos["tptaken"] is False)
                        if twise.pos == 1 and high[i] > twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            # Stop loss price will be set to break even with break_even() function
                            twise.break_even()
                            # Take profit operation is simply a partially position closing operation. 
                            # Here, half of the position is closed. (twise.current_open_pos["qty"] / 2)  
                            twise.exit_long(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is long, here is stop loss logic:
                        # if current position is long and low is 
                        # lower than stop loss price (twise.current_open_pos["sl"])
                        if twise.pos == 1 and low[i] < twise.current_open_pos["sl"]:
                            twise.exit_long(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is short, here is take profit logic:
                        if twise.pos == -1 and high[i] > twise.current_open_pos["sl"]:
                            twise.exit_short(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is short, here is stop loss logic:
                        if twise.pos == -1 and low[i] < twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_short(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)
                    else:
                        # If the bar’s low is closer to bar’s open than the bar’s high, 
                        # bar movement will be like: 
                        # open - low - high - close

                        # In this movement, stop loss operation will be checked before take profit. 
                        # This is because, it is assumed that the price will go down firstly. 
                        # For example, if both take profit and stop loss prices are exceeded,
                        # it is assumed that first, stop loss is executed, 
                        # then take profit will never be reached because 
                        # if the position is fully closed with exit_long, 
                        # twise.pos value will be 0 (which means there is no open position).

                        # if the current position is long, here is stop loss logic:
                        if twise.pos == 1 and low[i] < twise.current_open_pos["sl"]:
                            twise.exit_long(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                        # if current position is long, here is take profit logic:
                        if twise.pos == 1 and high[i] > twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_long(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is short, here is take profit logic:
                        if twise.pos == -1 and low[i] < twise.current_open_pos["tp"] and twise.current_open_pos["tptaken"] is False:
                            twise.break_even()
                            twise.exit_short(date_close, twise.current_open_pos["tp"], twise.current_open_pos["qty"] / 2, True)

                        # if current position is short, here is stop loss logic:
                        if twise.pos == -1 and high[i] > twise.current_open_pos["sl"]:
                            twise.exit_short(date_close, twise.current_open_pos["sl"], twise.current_open_pos["qty"])

                    # Opening long position
                    # If there is no long positions open
                    if twise.pos != 1:
                        # If ema_first crosses over ema_second
                        if ema_first[i] > ema_second[i]:
                            # You can manually set the amount to open position. 
                            # But there will be a calculation overhead.
                            # Testwise has a built-in share calculation funciton
                            # In tihs function, share is calculated as: 
                            # share = (equity * position risk) / (atr * risk factor)
                            share = twise.calculate_share(atrng[i], custom_position_risk=0.02)
                            # Opening long position with opening date (date_open), 
                            # opening price of next day (opn[i + 1]),
                            # amount to buy, and current atr value to define take profit and stop loss prices
                            twise.entry_long(date_open, opn[i + 1], share, atrng[i])

                    if twise.pos != -1:
                        if ema_first[i] < ema_second[i]:
                            share = twise.calculate_share(atrng[i], custom_position_risk=0.02)
                            # Opening short position with opening date (date_open), 
                            # opening price of next day (opn[i + 1]),
                            # amount to buy, and current atr value to define take profit and stop loss prices
                            twise.entry_short(date_open, opn[i + 1], share, atrng[i])
            # get_result() function will give you the backtest results
            print(twise.get_result())


def get_data(params):
    r = requests.get(url=BINANCE_URL, params=params)
    data = r.json()
    return data


def get_ohlc(data):
    opn = [float(o[1]) for o in data]
    close = [float(d[4]) for d in data]
    high = [float(h[2]) for h in data]
    low = [float(lo[3]) for lo in data]

    return opn, high, low, close


if __name__ == "__main__":
    main()
```

```python
Example backtest result:
{
    'net_profit': 30557.012567638478, 
    'net_profit_percent': 30.557012567638477, 
    'gross_profit': 69163.31181062985, 
    'gross_loss': 36783.34343506002, 
    'max_drawdown': -13265.365111723615, 
    'max_drawdown_rate': 2.3035183962356918, 
    'win_rate': 53.48837209302326, 
    'risk_reward_ratio': 1.6350338129618904, 
    'profit_factor': 1.880288884906174, 
    'ehlers_ratio': 0.1311829454585705, 
    'return_on_capital': 0.26978249297565415, 
    'max_capital_required': 113265.36511172361, 
    'total_trades': 43, 
    'pearsonsr': 0.8022110890986095, 
    'number_of_winning_trades': 23, 
    'number_of_losing_trades': 20, 
    'largest_winning_trade': ('2021-01-23 03', 34417.71907928039), 
    'largest_losing_trade': ('2020-09-21 03', -4627.351985682239)}
```

## Important note: 
Do not rely on a single test result. 
At least do walkforward test with a few iterations.

## Installation

Run the following to install:

```python
pip install testwise
```




%prep
%autosetup -n testwise-0.0.63

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-testwise -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.63-1
- Package Spec generated