blob: 00a9a7368cd2299192fc204c53fb05572cc4a6b9 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
%global _empty_manifest_terminate_build 0
Name: python-text-normalizer
Version: 0.1.3
Release: 1
Summary: Yoctol Natural Language Text Normalizer
License: MIT
URL: https://github.com/Yoctol/text-normalizer
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b7/98/b49628d90d5793e7369e25d6a84f9ca4a1fc6472d848d15daa9bf9129ad7/text-normalizer-0.1.3.tar.gz
BuildArch: noarch
%description
# text-normalizer
[![travis][travis-image]][travis-url]
[![pypi][pypi-image]][pypi-url]
[travis-image]: https://img.shields.io/travis/Yoctol/text-normalizer.svg?style=flat
[travis-url]: https://travis-ci.org/Yoctol/text-normalizer
[pypi-image]: https://img.shields.io/pypi/v/text-normalizer.svg?style=flat
[pypi-url]: https://pypi.python.org/pypi/text-normalizer
Normalize your Text String.
It is a python package that help you normalize your text data and recover it.
## Install
Use Python3
```
> pip install text-normalizer
```
## Usage
```python
from text_normalizer.text_normalizer_collection_library import chinese_charactor_text_normalizer_collection_2
input_sentence = " 我在85.33度C買了一杯900──1000元的咖啡 《ohoh》?? m_m"
nor_sentence, meta = chinese_charactor_text_normalizer_collection_2.normalize(input_sentence)
print(nor_sentence)
> "我在_float_度c買了一杯_int_-_int_元的咖啡 <ohoh>?? m_m"
de_sentence = chinese_charactor_text_normalizer_collection_2.denormalize(nor_sentence, meta)
print(de_sentence)
> "我在85.33度C買了一杯900──1000元的咖啡 《ohoh》?? m_m",
```
%package -n python3-text-normalizer
Summary: Yoctol Natural Language Text Normalizer
Provides: python-text-normalizer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-text-normalizer
# text-normalizer
[![travis][travis-image]][travis-url]
[![pypi][pypi-image]][pypi-url]
[travis-image]: https://img.shields.io/travis/Yoctol/text-normalizer.svg?style=flat
[travis-url]: https://travis-ci.org/Yoctol/text-normalizer
[pypi-image]: https://img.shields.io/pypi/v/text-normalizer.svg?style=flat
[pypi-url]: https://pypi.python.org/pypi/text-normalizer
Normalize your Text String.
It is a python package that help you normalize your text data and recover it.
## Install
Use Python3
```
> pip install text-normalizer
```
## Usage
```python
from text_normalizer.text_normalizer_collection_library import chinese_charactor_text_normalizer_collection_2
input_sentence = " 我在85.33度C買了一杯900──1000元的咖啡 《ohoh》?? m_m"
nor_sentence, meta = chinese_charactor_text_normalizer_collection_2.normalize(input_sentence)
print(nor_sentence)
> "我在_float_度c買了一杯_int_-_int_元的咖啡 <ohoh>?? m_m"
de_sentence = chinese_charactor_text_normalizer_collection_2.denormalize(nor_sentence, meta)
print(de_sentence)
> "我在85.33度C買了一杯900──1000元的咖啡 《ohoh》?? m_m",
```
%package help
Summary: Development documents and examples for text-normalizer
Provides: python3-text-normalizer-doc
%description help
# text-normalizer
[![travis][travis-image]][travis-url]
[![pypi][pypi-image]][pypi-url]
[travis-image]: https://img.shields.io/travis/Yoctol/text-normalizer.svg?style=flat
[travis-url]: https://travis-ci.org/Yoctol/text-normalizer
[pypi-image]: https://img.shields.io/pypi/v/text-normalizer.svg?style=flat
[pypi-url]: https://pypi.python.org/pypi/text-normalizer
Normalize your Text String.
It is a python package that help you normalize your text data and recover it.
## Install
Use Python3
```
> pip install text-normalizer
```
## Usage
```python
from text_normalizer.text_normalizer_collection_library import chinese_charactor_text_normalizer_collection_2
input_sentence = " 我在85.33度C買了一杯900──1000元的咖啡 《ohoh》?? m_m"
nor_sentence, meta = chinese_charactor_text_normalizer_collection_2.normalize(input_sentence)
print(nor_sentence)
> "我在_float_度c買了一杯_int_-_int_元的咖啡 <ohoh>?? m_m"
de_sentence = chinese_charactor_text_normalizer_collection_2.denormalize(nor_sentence, meta)
print(de_sentence)
> "我在85.33度C買了一杯900──1000元的咖啡 《ohoh》?? m_m",
```
%prep
%autosetup -n text-normalizer-0.1.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-text-normalizer -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.3-1
- Package Spec generated
|