1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
%global _empty_manifest_terminate_build 0
Name: python-text-sensitivity
Version: 0.3.3
Release: 1
Summary: Extension of text_explainability for sensitivity testing (robustness, fairness)
License: GNU LGPL v3
URL: https://git.science.uu.nl/m.j.robeer/text_sensitivity
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3a/e4/ab3bae1ad306176c73838f59b68a809f1158a4ce4ed4bf97d820d694ce3a/text_sensitivity-0.3.3.tar.gz
BuildArch: noarch
Requires: python3-genbase
Requires: python3-text-explainability
Requires: python3-nlpaug
Requires: python3-Faker
Requires: python3-yaspin
%description
> Extension of [text_explainability](https://git.science.uu.nl/m.j.robeer/text_explainability)
Uses the **generic architecture** of `text_explainability` to also include tests of **safety** (_how safe it the model in production_, i.e. types of inputs it can handle), **robustness** (_how generalizable the model is in production_, e.g. stability when adding typos, or the effect of adding random unrelated data) and **fairness** (_if equal individuals are treated equally by the model_, e.g. subgroup fairness on sex and nationality).
© Marcel Robeer, 2021
## Quick tour
**Safety**: test if your model is able to handle different data types.
```python
from text_sensitivity import RandomAscii, RandomEmojis, combine_generators
# Generate 10 strings with random ASCII characters
RandomAscii().generate_list(n=10)
# Generate 5 strings with random ASCII characters and emojis
combine_generators(RandomAscii(), RandomEmojis()).generate_list(n=5)
```
**Robustness**: if your model performs equally for different entities ...
```python
from text_sensitivity import RandomAddress, RandomEmail
# Random address of your current locale (default = 'nl')
RandomAddress(sep=', ').generate_list(n=5)
# Random e-mail addresses in Spanish ('es') and Portuguese ('pt'), and include from which country the e-mail is
RandomEmail(languages=['es', 'pt']).generate_list(n=10, attributes=True)
```
```python
from text_sensitivity import compare_accuracy
from text_sensitivity.perturbation import to_upper, add_typos
# Is model accuracy equal when we change all sentences to uppercase?
compare_accuracy(env, model, to_upper)
# Is model accuracy equal when we add typos in words?
compare_accuracy(env, model, add_typos)
```
**Fairness**: see if performance is equal among subgroups.
```python
from text_sensitivity import RandomName
# Generate random Dutch ('nl') and Russian ('ru') names, both 'male' and 'female' (+ return attributes)
RandomName(languages=['nl', 'ru'], sex=['male', 'female']).generate_list(n=10, attributes=True)
```
## Installation
See the [installation](docs/INSTALLATION.md) instructions for an extended installation guide.
| Method | Instructions |
|--------|--------------|
| `pip` | Install from [PyPI](https://pypi.org/project/text-sensitivity/) via `pip3 install text_sensitivity`. |
| Local | Clone this repository and install via `pip3 install -e .` or locally run `python3 setup.py install`.
## Documentation
Full documentation of the latest version is provided at [https://text-sensitivity.readthedocs.io/](https://text-sensitivity.readthedocs.io/).
## Example usage
See [example_usage.md](example_usage.md) to see an example of how the package can be used, or run the lines in `example_usage.py` to do explore it interactively.
## Releases
`text_sensitivity` is officially released through [PyPI](https://pypi.org/project/text-sensitivity/).
See [CHANGELOG.md](CHANGELOG.md) for a full overview of the changes for each version.
## Citation
```bibtex
@misc{text_sensitivity,
title = {Python package text\_sensitivity},
author = {Marcel Robeer},
howpublished = {\url{https://git.science.uu.nl/m.j.robeer/text_sensitivity}},
year = {2021}
}
```
## Maintenance
### Contributors
- [Marcel Robeer](https://www.uu.nl/staff/MJRobeer) (`@m.j.robeer`)
- [Elize Herrewijnen](https://www.uu.nl/staff/EHerrewijnen) (`@e.herrewijnen`)
### Todo
Tasks yet to be done:
* Word-level perturbations
* Add fairness-specific metrics:
- Counterfactual fairness
* Add expected behavior
- Robustness: equal to prior prediction, or in some cases might expect that it deviates
- Fairness: may deviate from original prediction
* Tests
- Add tests for perturbations
- Add tests for sensitivity testing schemes
* Add visualization ability
## Credits
- Edward Ma. _[NLP Augmentation](https://github.com/makcedward/nlpaug)_. 2019.
- Daniele Faraglia and other contributors. _[Faker](https://github.com/joke2k/faker)_. 2012.
- Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin and Sameer Singh. [Beyond Accuracy: Behavioral Testing of NLP models with CheckList](https://paperswithcode.com/paper/beyond-accuracy-behavioral-testing-of-nlp). _Association for Computational Linguistics_ (_ACL_). 2020.
%package -n python3-text-sensitivity
Summary: Extension of text_explainability for sensitivity testing (robustness, fairness)
Provides: python-text-sensitivity
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-text-sensitivity
> Extension of [text_explainability](https://git.science.uu.nl/m.j.robeer/text_explainability)
Uses the **generic architecture** of `text_explainability` to also include tests of **safety** (_how safe it the model in production_, i.e. types of inputs it can handle), **robustness** (_how generalizable the model is in production_, e.g. stability when adding typos, or the effect of adding random unrelated data) and **fairness** (_if equal individuals are treated equally by the model_, e.g. subgroup fairness on sex and nationality).
© Marcel Robeer, 2021
## Quick tour
**Safety**: test if your model is able to handle different data types.
```python
from text_sensitivity import RandomAscii, RandomEmojis, combine_generators
# Generate 10 strings with random ASCII characters
RandomAscii().generate_list(n=10)
# Generate 5 strings with random ASCII characters and emojis
combine_generators(RandomAscii(), RandomEmojis()).generate_list(n=5)
```
**Robustness**: if your model performs equally for different entities ...
```python
from text_sensitivity import RandomAddress, RandomEmail
# Random address of your current locale (default = 'nl')
RandomAddress(sep=', ').generate_list(n=5)
# Random e-mail addresses in Spanish ('es') and Portuguese ('pt'), and include from which country the e-mail is
RandomEmail(languages=['es', 'pt']).generate_list(n=10, attributes=True)
```
```python
from text_sensitivity import compare_accuracy
from text_sensitivity.perturbation import to_upper, add_typos
# Is model accuracy equal when we change all sentences to uppercase?
compare_accuracy(env, model, to_upper)
# Is model accuracy equal when we add typos in words?
compare_accuracy(env, model, add_typos)
```
**Fairness**: see if performance is equal among subgroups.
```python
from text_sensitivity import RandomName
# Generate random Dutch ('nl') and Russian ('ru') names, both 'male' and 'female' (+ return attributes)
RandomName(languages=['nl', 'ru'], sex=['male', 'female']).generate_list(n=10, attributes=True)
```
## Installation
See the [installation](docs/INSTALLATION.md) instructions for an extended installation guide.
| Method | Instructions |
|--------|--------------|
| `pip` | Install from [PyPI](https://pypi.org/project/text-sensitivity/) via `pip3 install text_sensitivity`. |
| Local | Clone this repository and install via `pip3 install -e .` or locally run `python3 setup.py install`.
## Documentation
Full documentation of the latest version is provided at [https://text-sensitivity.readthedocs.io/](https://text-sensitivity.readthedocs.io/).
## Example usage
See [example_usage.md](example_usage.md) to see an example of how the package can be used, or run the lines in `example_usage.py` to do explore it interactively.
## Releases
`text_sensitivity` is officially released through [PyPI](https://pypi.org/project/text-sensitivity/).
See [CHANGELOG.md](CHANGELOG.md) for a full overview of the changes for each version.
## Citation
```bibtex
@misc{text_sensitivity,
title = {Python package text\_sensitivity},
author = {Marcel Robeer},
howpublished = {\url{https://git.science.uu.nl/m.j.robeer/text_sensitivity}},
year = {2021}
}
```
## Maintenance
### Contributors
- [Marcel Robeer](https://www.uu.nl/staff/MJRobeer) (`@m.j.robeer`)
- [Elize Herrewijnen](https://www.uu.nl/staff/EHerrewijnen) (`@e.herrewijnen`)
### Todo
Tasks yet to be done:
* Word-level perturbations
* Add fairness-specific metrics:
- Counterfactual fairness
* Add expected behavior
- Robustness: equal to prior prediction, or in some cases might expect that it deviates
- Fairness: may deviate from original prediction
* Tests
- Add tests for perturbations
- Add tests for sensitivity testing schemes
* Add visualization ability
## Credits
- Edward Ma. _[NLP Augmentation](https://github.com/makcedward/nlpaug)_. 2019.
- Daniele Faraglia and other contributors. _[Faker](https://github.com/joke2k/faker)_. 2012.
- Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin and Sameer Singh. [Beyond Accuracy: Behavioral Testing of NLP models with CheckList](https://paperswithcode.com/paper/beyond-accuracy-behavioral-testing-of-nlp). _Association for Computational Linguistics_ (_ACL_). 2020.
%package help
Summary: Development documents and examples for text-sensitivity
Provides: python3-text-sensitivity-doc
%description help
> Extension of [text_explainability](https://git.science.uu.nl/m.j.robeer/text_explainability)
Uses the **generic architecture** of `text_explainability` to also include tests of **safety** (_how safe it the model in production_, i.e. types of inputs it can handle), **robustness** (_how generalizable the model is in production_, e.g. stability when adding typos, or the effect of adding random unrelated data) and **fairness** (_if equal individuals are treated equally by the model_, e.g. subgroup fairness on sex and nationality).
© Marcel Robeer, 2021
## Quick tour
**Safety**: test if your model is able to handle different data types.
```python
from text_sensitivity import RandomAscii, RandomEmojis, combine_generators
# Generate 10 strings with random ASCII characters
RandomAscii().generate_list(n=10)
# Generate 5 strings with random ASCII characters and emojis
combine_generators(RandomAscii(), RandomEmojis()).generate_list(n=5)
```
**Robustness**: if your model performs equally for different entities ...
```python
from text_sensitivity import RandomAddress, RandomEmail
# Random address of your current locale (default = 'nl')
RandomAddress(sep=', ').generate_list(n=5)
# Random e-mail addresses in Spanish ('es') and Portuguese ('pt'), and include from which country the e-mail is
RandomEmail(languages=['es', 'pt']).generate_list(n=10, attributes=True)
```
```python
from text_sensitivity import compare_accuracy
from text_sensitivity.perturbation import to_upper, add_typos
# Is model accuracy equal when we change all sentences to uppercase?
compare_accuracy(env, model, to_upper)
# Is model accuracy equal when we add typos in words?
compare_accuracy(env, model, add_typos)
```
**Fairness**: see if performance is equal among subgroups.
```python
from text_sensitivity import RandomName
# Generate random Dutch ('nl') and Russian ('ru') names, both 'male' and 'female' (+ return attributes)
RandomName(languages=['nl', 'ru'], sex=['male', 'female']).generate_list(n=10, attributes=True)
```
## Installation
See the [installation](docs/INSTALLATION.md) instructions for an extended installation guide.
| Method | Instructions |
|--------|--------------|
| `pip` | Install from [PyPI](https://pypi.org/project/text-sensitivity/) via `pip3 install text_sensitivity`. |
| Local | Clone this repository and install via `pip3 install -e .` or locally run `python3 setup.py install`.
## Documentation
Full documentation of the latest version is provided at [https://text-sensitivity.readthedocs.io/](https://text-sensitivity.readthedocs.io/).
## Example usage
See [example_usage.md](example_usage.md) to see an example of how the package can be used, or run the lines in `example_usage.py` to do explore it interactively.
## Releases
`text_sensitivity` is officially released through [PyPI](https://pypi.org/project/text-sensitivity/).
See [CHANGELOG.md](CHANGELOG.md) for a full overview of the changes for each version.
## Citation
```bibtex
@misc{text_sensitivity,
title = {Python package text\_sensitivity},
author = {Marcel Robeer},
howpublished = {\url{https://git.science.uu.nl/m.j.robeer/text_sensitivity}},
year = {2021}
}
```
## Maintenance
### Contributors
- [Marcel Robeer](https://www.uu.nl/staff/MJRobeer) (`@m.j.robeer`)
- [Elize Herrewijnen](https://www.uu.nl/staff/EHerrewijnen) (`@e.herrewijnen`)
### Todo
Tasks yet to be done:
* Word-level perturbations
* Add fairness-specific metrics:
- Counterfactual fairness
* Add expected behavior
- Robustness: equal to prior prediction, or in some cases might expect that it deviates
- Fairness: may deviate from original prediction
* Tests
- Add tests for perturbations
- Add tests for sensitivity testing schemes
* Add visualization ability
## Credits
- Edward Ma. _[NLP Augmentation](https://github.com/makcedward/nlpaug)_. 2019.
- Daniele Faraglia and other contributors. _[Faker](https://github.com/joke2k/faker)_. 2012.
- Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin and Sameer Singh. [Beyond Accuracy: Behavioral Testing of NLP models with CheckList](https://paperswithcode.com/paper/beyond-accuracy-behavioral-testing-of-nlp). _Association for Computational Linguistics_ (_ACL_). 2020.
%prep
%autosetup -n text-sensitivity-0.3.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-text-sensitivity -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.3-1
- Package Spec generated
|