1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
|
%global _empty_manifest_terminate_build 0
Name: python-textattack
Version: 0.3.8
Release: 1
Summary: A library for generating text adversarial examples
License: MIT
URL: https://github.com/QData/textattack
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/89/0c/dcfaf9704c4b864c9e391e6daa81439af0eb5f5085ad0fb2e04dee2164dc/textattack-0.3.8.tar.gz
BuildArch: noarch
Requires: python3-bert-score
Requires: python3-editdistance
Requires: python3-flair
Requires: python3-filelock
Requires: python3-language-tool-python
Requires: python3-lemminflect
Requires: python3-lru-dict
Requires: python3-datasets
Requires: python3-nltk
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-scipy
Requires: python3-torch
Requires: python3-transformers
Requires: python3-terminaltables
Requires: python3-tqdm
Requires: python3-word2number
Requires: python3-num2words
Requires: python3-more-itertools
Requires: python3-PySocks
Requires: python3-pinyin
Requires: python3-jieba
Requires: python3-OpenHowNet
Requires: python3-pycld2
Requires: python3-click
Requires: python3-recommonmark
Requires: python3-nbsphinx
Requires: python3-sphinx-autobuild
Requires: python3-sphinx-rtd-theme
Requires: python3-sphinx-markdown-tables
Requires: python3-sphinx-copybutton
Requires: python3-black
Requires: python3-docformatter
Requires: python3-isort
Requires: python3-flake8
Requires: python3-pytest
Requires: python3-pytest-xdist
Requires: python3-tensorflow
Requires: python3-tensorflow-hub
Requires: python3-tensorflow-text
Requires: python3-tensorboardX
Requires: python3-tensorflow-estimator
Requires: python3-sentence-transformers
Requires: python3-stanza
Requires: python3-visdom
Requires: python3-wandb
Requires: python3-gensim
Requires: python3-recommonmark
Requires: python3-nbsphinx
Requires: python3-sphinx-autobuild
Requires: python3-sphinx-rtd-theme
Requires: python3-sphinx-markdown-tables
Requires: python3-sphinx-copybutton
Requires: python3-sentence-transformers
Requires: python3-stanza
Requires: python3-visdom
Requires: python3-wandb
Requires: python3-gensim
Requires: python3-tensorflow
Requires: python3-tensorflow-hub
Requires: python3-tensorflow-text
Requires: python3-tensorboardX
Requires: python3-tensorflow-estimator
Requires: python3-black
Requires: python3-docformatter
Requires: python3-isort
Requires: python3-flake8
Requires: python3-pytest
Requires: python3-pytest-xdist
%description
<h1 align="center">TextAttack 🐙</h1>
<p align="center">Generating adversarial examples for NLP models</p>
<p align="center">
<a href="https://textattack.readthedocs.io/">[TextAttack Documentation on ReadTheDocs]</a>
<br> <br>
<a href="#about">About</a> •
<a href="#setup">Setup</a> •
<a href="#usage">Usage</a> •
<a href="#design">Design</a>
<br> <br>
<a target="_blank">
<img src="https://github.com/QData/TextAttack/workflows/Github%20PyTest/badge.svg" alt="Github Runner Covergae Status">
</a>
<a href="https://badge.fury.io/py/textattack">
<img src="https://badge.fury.io/py/textattack.svg" alt="PyPI version" height="18">
</a>
</p>
<img src="https://jxmo.io/files/textattack.gif" alt="TextAttack Demo GIF" style="display: block; margin: 0 auto;" />
## About
TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
> If you're looking for information about TextAttack's menagerie of pre-trained models, you might want the [TextAttack Model Zoo](https://textattack.readthedocs.io/en/latest/3recipes/models.html) page.
## Slack Channel
For help and realtime updates related to TextAttack, please [join the TextAttack Slack](https://join.slack.com/t/textattack/shared_invite/zt-huomtd9z-KqdHBPPu2rOP~Z8q3~urgg)!
### *Why TextAttack?*
There are lots of reasons to use TextAttack:
1. **Understand NLP models better** by running different adversarial attacks on them and examining the output
2. **Research and develop different NLP adversarial attacks** using the TextAttack framework and library of components
3. **Augment your dataset** to increase model generalization and robustness downstream
3. **Train NLP models** using just a single command (all downloads included!)
## Setup
### Installation
You should be running Python 3.6+ to use this package. A CUDA-compatible GPU is optional but will greatly improve code speed. TextAttack is available through pip:
```bash
pip install textattack
```
Once TextAttack is installed, you can run it via command-line (`textattack ...`)
or via python module (`python -m textattack ...`).
> **Tip**: TextAttack downloads files to `~/.cache/textattack/` by default. This includes pretrained models,
> dataset samples, and the configuration file `config.yaml`. To change the cache path, set the
> environment variable `TA_CACHE_DIR`. (for example: `TA_CACHE_DIR=/tmp/ textattack attack ...`).
## Usage
### Help: `textattack --help`
TextAttack's main features can all be accessed via the `textattack` command. Two very
common commands are `textattack attack <args>`, and `textattack augment <args>`. You can see more
information about all commands using
```bash
textattack --help
```
or a specific command using, for example,
```bash
textattack attack --help
```
The [`examples/`](examples/) folder includes scripts showing common TextAttack usage for training models, running attacks, and augmenting a CSV file.
The [documentation website](https://textattack.readthedocs.io/en/latest) contains walkthroughs explaining basic usage of TextAttack, including building a custom transformation and a custom constraint..
### Running Attacks: `textattack attack --help`
The easiest way to try out an attack is via the command-line interface, `textattack attack`.
> **Tip:** If your machine has multiple GPUs, you can distribute the attack across them using the `--parallel` option. For some attacks, this can really help performance. (If you want to attack Keras models in parallel, please check out `examples/attack/attack_keras_parallel.py` instead)
Here are some concrete examples:
*TextFooler on BERT trained on the MR sentiment classification dataset*:
```bash
textattack attack --recipe textfooler --model bert-base-uncased-mr --num-examples 100
```
*DeepWordBug on DistilBERT trained on the Quora Question Pairs paraphrase identification dataset*:
```bash
textattack attack --model distilbert-base-uncased-cola --recipe deepwordbug --num-examples 100
```
*Beam search with beam width 4 and word embedding transformation and untargeted goal function on an LSTM*:
```bash
textattack attack --model lstm-mr --num-examples 20 \
--search-method beam-search^beam_width=4 --transformation word-swap-embedding \
--constraints repeat stopword max-words-perturbed^max_num_words=2 embedding^min_cos_sim=0.8 part-of-speech \
--goal-function untargeted-classification
```
> **Tip:** Instead of specifying a dataset and number of examples, you can pass `--interactive` to attack samples inputted by the user.
### Attacks and Papers Implemented ("Attack Recipes"): `textattack attack --recipe [recipe_name]`
We include attack recipes which implement attacks from the literature. You can list attack recipes using `textattack list attack-recipes`.
To run an attack recipe: `textattack attack --recipe [recipe_name]`
<img src="docs/_static/imgs/overview.png" alt="TextAttack Overview" style="display: block; margin: 0 auto;" />
<table style="width:100%" border="1">
<thead>
<tr class="header">
<th><strong>Attack Recipe Name</strong></th>
<th><strong>Goal Function</strong></th>
<th><strong>ConstraintsEnforced</strong></th>
<th><strong>Transformation</strong></th>
<th><strong>Search Method</strong></th>
<th><strong>Main Idea</strong></th>
</tr>
</thead>
<tbody>
<tr><td style="text-align: center;" colspan="6"><strong><br>Attacks on classification tasks, like sentiment classification and entailment:<br></strong></td></tr>
<tr>
<td><code>a2t</code>
<span class="citation" data-cites="yoo2021a2t"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Word embedding distance, DistilBERT sentence encoding cosine similarity, part-of-speech consistency</sub></td>
<td><sub>Counter-fitted word embedding swap (or) BERT Masked Token Prediction</sub></td>
<td><sub>Greedy-WIR (gradient)</sub></td>
<td ><sub>from (["Towards Improving Adversarial Training of NLP Models" (Yoo et al., 2021)](https://arxiv.org/abs/2109.00544))</sub></td>
</tr>
<tr>
<td><code>alzantot</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Language Model perplexity, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>from (["Generating Natural Language Adversarial Examples" (Alzantot et al., 2018)](https://arxiv.org/abs/1804.07998))</sub></td>
</tr>
<tr>
<td><code>bae</code> <span class="citation" data-cites="garg2020bae"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>BERT Masked Token Prediction</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>BERT masked language model transformation attack from (["BAE: BERT-based Adversarial Examples for Text Classification" (Garg & Ramakrishnan, 2019)](https://arxiv.org/abs/2004.01970)). </td>
</tr>
<tr>
<td><code>bert-attack</code> <span class="citation" data-cites="li2020bertattack"></span></td>
<td><sub>Untargeted Classification</td>
<td><sub>USE sentence encoding cosine similarity, Maximum number of words perturbed</td>
<td><sub>BERT Masked Token Prediction (with subword expansion)</td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub> (["BERT-ATTACK: Adversarial Attack Against BERT Using BERT" (Li et al., 2020)](https://arxiv.org/abs/2004.09984))</sub></td>
</tr>
<tr>
<td><code>checklist</code> <span class="citation" data-cites="Gao2018BlackBoxGO"></span></td>
<td><sub>{Untargeted, Targeted} Classification</sub></td>
<td><sub>checklist distance</sub></td>
<td><sub>contract, extend, and substitutes name entities</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Invariance testing implemented in CheckList . (["Beyond Accuracy: Behavioral Testing of NLP models with CheckList" (Ribeiro et al., 2020)](https://arxiv.org/abs/2005.04118))</sub></td>
</tr>
<tr>
<td> <code>clare</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>RoBERTa Masked Prediction for token swap, insert and merge</sub></td>
<td><sub>Greedy</sub></td>
<td ><sub>["Contextualized Perturbation for Textual Adversarial Attack" (Li et al., 2020)](https://arxiv.org/abs/2009.07502))</sub></td>
</tr>
<tr>
<td><code>deepwordbug</code> <span class="citation" data-cites="Gao2018BlackBoxGO"></span></td>
<td><sub>{Untargeted, Targeted} Classification</sub></td>
<td><sub>Levenshtein edit distance</sub></td>
<td><sub>{Character Insertion, Character Deletion, Neighboring Character Swap, Character Substitution}</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy replace-1 scoring and multi-transformation character-swap attack (["Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers" (Gao et al., 2018)](https://arxiv.org/abs/1801.04354)</sub></td>
</tr>
<tr>
<td> <code>fast-alzantot</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Language Model perplexity, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>Modified, faster version of the Alzantot et al. genetic algorithm, from (["Certified Robustness to Adversarial Word Substitutions" (Jia et al., 2019)](https://arxiv.org/abs/1909.00986))</sub></td>
</tr>
<tr>
<td><code>hotflip</code> (word swap) <span class="citation" data-cites="Ebrahimi2017HotFlipWA"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Word Embedding Cosine Similarity, Part-of-speech match, Number of words perturbed</sub></td>
<td><sub>Gradient-Based Word Swap</sub></td>
<td><sub>Beam search</sub></td>
<td ><sub> (["HotFlip: White-Box Adversarial Examples for Text Classification" (Ebrahimi et al., 2017)](https://arxiv.org/abs/1712.06751))</sub></td>
</tr>
<tr>
<td><code>iga</code> <span class="citation" data-cites="iga-wang2019natural"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>Improved genetic algorithm -based word substitution from (["Natural Language Adversarial Attacks and Defenses in Word Level (Wang et al., 2019)"](https://arxiv.org/abs/1909.06723)</sub></td>
</tr>
<tr>
<td><code>input-reduction</code> <span class="citation" data-cites="feng2018pathologies"></span></td>
<td><sub>Input Reduction</sub></td>
<td></td>
<td><sub>Word deletion</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with word importance ranking , Reducing the input while maintaining the prediction through word importance ranking (["Pathologies of Neural Models Make Interpretation Difficult" (Feng et al., 2018)](https://arxiv.org/pdf/1804.07781.pdf))</sub></td>
</tr>
<tr>
<td><code>kuleshov</code> <span class="citation" data-cites="Kuleshov2018AdversarialEF"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Thought vector encoding cosine similarity, Language model similarity probability</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Greedy word swap</sub></td>
<td ><sub>(["Adversarial Examples for Natural Language Classification Problems" (Kuleshov et al., 2018)](https://openreview.net/pdf?id=r1QZ3zbAZ)) </sub></td>
</tr>
<tr>
<td><code>pruthi</code> <span class="citation" data-cites="pruthi2019combating"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Minimum word length, Maximum number of words perturbed</sub></td>
<td><sub>{Neighboring Character Swap, Character Deletion, Character Insertion, Keyboard-Based Character Swap}</sub></td>
<td><sub>Greedy search</sub></td>
<td ><sub>simulates common typos (["Combating Adversarial Misspellings with Robust Word Recognition" (Pruthi et al., 2019)](https://arxiv.org/abs/1905.11268) </sub></td>
</tr>
<tr>
<td><code>pso</code> <span class="citation" data-cites="pso-zang-etal-2020-word"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td></td>
<td><sub>HowNet Word Swap</sub></td>
<td><sub>Particle Swarm Optimization</sub></td>
<td ><sub>(["Word-level Textual Adversarial Attacking as Combinatorial Optimization" (Zang et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.540/)) </sub></td>
</tr>
<tr>
<td><code>pwws</code> <span class="citation" data-cites="pwws-ren-etal-2019-generating"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td></td>
<td><sub>WordNet-based synonym swap</sub></td>
<td><sub>Greedy-WIR (saliency)</sub></td>
<td ><sub>Greedy attack with word importance ranking based on word saliency and synonym swap scores (["Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency" (Ren et al., 2019)](https://www.aclweb.org/anthology/P19-1103/))</sub> </td>
</tr>
<tr>
<td><code>textbugger</code> : (black-box) <span class="citation" data-cites="Li2019TextBuggerGA"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>{Character Insertion, Character Deletion, Neighboring Character Swap, Character Substitution}</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>([(["TextBugger: Generating Adversarial Text Against Real-world Applications" (Li et al., 2018)](https://arxiv.org/abs/1812.05271)).</sub></td>
</tr>
<tr>
<td><code>textfooler</code> <span class="citation" data-cites="Jin2019TextFooler"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Word Embedding Distance, Part-of-speech match, USE sentence encoding cosine similarity</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with word importance ranking (["Is Bert Really Robust?" (Jin et al., 2019)](https://arxiv.org/abs/1907.11932))</sub> </td>
</tr>
<tr><td style="text-align: center;" colspan="6"><strong><br>Attacks on sequence-to-sequence models: <br></strong></td></tr>
<tr>
<td><code>morpheus</code> <span class="citation" data-cites="morpheus-tan-etal-2020-morphin"></span></td>
<td><sub>Minimum BLEU Score</sub> </td>
<td></td>
<td><sub>Inflection Word Swap</sub> </td>
<td><sub>Greedy search</sub> </td>
<td ><sub>Greedy to replace words with their inflections with the goal of minimizing BLEU score (["It’s Morphin’ Time! Combating Linguistic Discrimination with Inflectional Perturbations"](https://www.aclweb.org/anthology/2020.acl-main.263.pdf)</sub> </td>
</tr>
</tr>
<tr>
<td><code>seq2sick</code> :(black-box) <span class="citation" data-cites="cheng2018seq2sick"></span></td>
<td><sub>Non-overlapping output</sub> </td>
<td></td>
<td><sub>Counter-fitted word embedding swap</sub> </td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with goal of changing every word in the output translation. Currently implemented as black-box with plans to change to white-box as done in paper (["Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples" (Cheng et al., 2018)](https://arxiv.org/abs/1803.01128)) </sub> </td>
</tr>
</tbody>
</font>
</table>
#### Recipe Usage Examples
Here are some examples of testing attacks from the literature from the command-line:
*TextFooler against BERT fine-tuned on SST-2:*
```bash
textattack attack --model bert-base-uncased-sst2 --recipe textfooler --num-examples 10
```
*seq2sick (black-box) against T5 fine-tuned for English-German translation:*
```bash
textattack attack --model t5-en-de --recipe seq2sick --num-examples 100
```
### Augmenting Text: `textattack augment`
Many of the components of TextAttack are useful for data augmentation. The `textattack.Augmenter` class
uses a transformation and a list of constraints to augment data. We also offer built-in recipes
for data augmentation:
- `wordnet` augments text by replacing words with WordNet synonyms
- `embedding` augments text by replacing words with neighbors in the counter-fitted embedding space, with a constraint to ensure their cosine similarity is at least 0.8
- `charswap` augments text by substituting, deleting, inserting, and swapping adjacent characters
- `eda` augments text with a combination of word insertions, substitutions and deletions.
- `checklist` augments text by contraction/extension and by substituting names, locations, numbers.
- `clare` augments text by replacing, inserting, and merging with a pre-trained masked language model.
#### Augmentation Command-Line Interface
The easiest way to use our data augmentation tools is with `textattack augment <args>`. `textattack augment`
takes an input CSV file and text column to augment, along with the number of words to change per augmentation
and the number of augmentations per input example. It outputs a CSV in the same format with all the augmentation
examples corresponding to the proper columns.
For example, given the following as `examples.csv`:
```csv
"text",label
"the rock is destined to be the 21st century's new conan and that he's going to make a splash even greater than arnold schwarzenegger , jean- claud van damme or steven segal.", 1
"the gorgeously elaborate continuation of 'the lord of the rings' trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .", 1
"take care of my cat offers a refreshingly different slice of asian cinema .", 1
"a technically well-made suspenser . . . but its abrupt drop in iq points as it races to the finish line proves simply too discouraging to let slide .", 0
"it's a mystery how the movie could be released in this condition .", 0
```
The command
```bash
textattack augment --input-csv examples.csv --output-csv output.csv --input-column text --recipe embedding --pct-words-to-swap .1 --transformations-per-example 2 --exclude-original
```
will augment the `text` column by altering 10% of each example's words, generating twice as many augmentations as original inputs, and exclude the original inputs from the
output CSV. (All of this will be saved to `augment.csv` by default.)
> **Tip:** Just as running attacks interactively, you can also pass `--interactive` to augment samples inputted by the user to quickly try out different augmentation recipes!
After augmentation, here are the contents of `augment.csv`:
```csv
text,label
"the rock is destined to be the 21st century's newest conan and that he's gonna to make a splashing even stronger than arnold schwarzenegger , jean- claud van damme or steven segal.",1
"the rock is destined to be the 21tk century's novel conan and that he's going to make a splat even greater than arnold schwarzenegger , jean- claud van damme or stevens segal.",1
the gorgeously elaborate continuation of 'the lord of the rings' trilogy is so huge that a column of expression significant adequately describe co-writer/director pedro jackson's expanded vision of j . rs . r . tolkien's middle-earth .,1
the gorgeously elaborate continuation of 'the lordy of the piercings' trilogy is so huge that a column of mots cannot adequately describe co-novelist/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .,1
take care of my cat offerings a pleasantly several slice of asia cinema .,1
taking care of my cat offers a pleasantly different slice of asiatic kino .,1
a technically good-made suspenser . . . but its abrupt drop in iq points as it races to the finish bloodline proves straightforward too disheartening to let slide .,0
a technically well-made suspenser . . . but its abrupt drop in iq dot as it races to the finish line demonstrates simply too disheartening to leave slide .,0
it's a enigma how the film wo be releases in this condition .,0
it's a enigma how the filmmaking wo be publicized in this condition .,0
```
The 'embedding' augmentation recipe uses counterfitted embedding nearest-neighbors to augment data.
#### Augmentation Python Interface
In addition to the command-line interface, you can augment text dynamically by importing the
`Augmenter` in your own code. All `Augmenter` objects implement `augment` and `augment_many` to generate augmentations
of a string or a list of strings. Here's an example of how to use the `EmbeddingAugmenter` in a python script:
```python
>>> from textattack.augmentation import EmbeddingAugmenter
>>> augmenter = EmbeddingAugmenter()
>>> s = 'What I cannot create, I do not understand.'
>>> augmenter.augment(s)
['What I notable create, I do not understand.', 'What I significant create, I do not understand.', 'What I cannot engender, I do not understand.', 'What I cannot creating, I do not understand.', 'What I cannot creations, I do not understand.', 'What I cannot create, I do not comprehend.', 'What I cannot create, I do not fathom.', 'What I cannot create, I do not understanding.', 'What I cannot create, I do not understands.', 'What I cannot create, I do not understood.', 'What I cannot create, I do not realise.']
```
You can also create your own augmenter from scratch by importing transformations/constraints from `textattack.transformations` and `textattack.constraints`. Here's an example that generates augmentations of a string using `WordSwapRandomCharacterDeletion`:
```python
>>> from textattack.transformations import WordSwapRandomCharacterDeletion
>>> from textattack.transformations import CompositeTransformation
>>> from textattack.augmentation import Augmenter
>>> transformation = CompositeTransformation([WordSwapRandomCharacterDeletion()])
>>> augmenter = Augmenter(transformation=transformation, transformations_per_example=5)
>>> s = 'What I cannot create, I do not understand.'
>>> augmenter.augment(s)
['What I cannot creae, I do not understand.', 'What I cannot creat, I do not understand.', 'What I cannot create, I do not nderstand.', 'What I cannot create, I do nt understand.', 'Wht I cannot create, I do not understand.']
```
### Training Models: `textattack train`
Our model training code is available via `textattack train` to help you train LSTMs,
CNNs, and `transformers` models using TextAttack out-of-the-box. Datasets are
automatically loaded using the `datasets` package.
#### Training Examples
*Train our default LSTM for 50 epochs on the Yelp Polarity dataset:*
```bash
textattack train --model-name-or-path lstm --dataset yelp_polarity --epochs 50 --learning-rate 1e-5
```
*Fine-Tune `bert-base` on the `CoLA` dataset for 5 epochs**:
```bash
textattack train --model-name-or-path bert-base-uncased --dataset glue^cola --per-device-train-batch-size 8 --epochs 5
```
### To check datasets: `textattack peek-dataset`
To take a closer look at a dataset, use `textattack peek-dataset`. TextAttack will print some cursory statistics about the inputs and outputs from the dataset. For example,
```bash
textattack peek-dataset --dataset-from-huggingface snli
```
will show information about the SNLI dataset from the NLP package.
### To list functional components: `textattack list`
There are lots of pieces in TextAttack, and it can be difficult to keep track of all of them. You can use `textattack list` to list components, for example, pretrained models (`textattack list models`) or available search methods (`textattack list search-methods`).
## Design
### Models
TextAttack is model-agnostic! You can use `TextAttack` to analyze any model that outputs IDs, tensors, or strings. To help users, TextAttack includes pre-trained models for different common NLP tasks. This makes it easier for
users to get started with TextAttack. It also enables a more fair comparison of attacks from
the literature.
#### Built-in Models and Datasets
TextAttack also comes built-in with models and datasets. Our command-line interface will automatically match the correct
dataset to the correct model. We include 82 different (Oct 2020) pre-trained models for each of the nine [GLUE](https://gluebenchmark.com/)
tasks, as well as some common datasets for classification, translation, and summarization.
A list of available pretrained models and their validation accuracies is available at
[textattack/models/README.md](textattack/models/README.md). You can also view a full list of provided models
& datasets via `textattack attack --help`.
Here's an example of using one of the built-in models (the SST-2 dataset is automatically loaded):
```bash
textattack attack --model roberta-base-sst2 --recipe textfooler --num-examples 10
```
#### HuggingFace support: `transformers` models and `datasets` datasets
We also provide built-in support for [`transformers` pretrained models](https://huggingface.co/models)
and datasets from the [`datasets` package](https://github.com/huggingface/datasets)! Here's an example of loading
and attacking a pre-trained model and dataset:
```bash
textattack attack --model-from-huggingface distilbert-base-uncased-finetuned-sst-2-english --dataset-from-huggingface glue^sst2 --recipe deepwordbug --num-examples 10
```
You can explore other pre-trained models using the `--model-from-huggingface` argument, or other datasets by changing
`--dataset-from-huggingface`.
#### Loading a model or dataset from a file
You can easily try out an attack on a local model or dataset sample. To attack a pre-trained model,
create a short file that loads them as variables `model` and `tokenizer`. The `tokenizer` must
be able to transform string inputs to lists or tensors of IDs using a method called `encode()`. The
model must take inputs via the `__call__` method.
##### Custom Model from a file
To experiment with a model you've trained, you could create the following file
and name it `my_model.py`:
```python
model = load_your_model_with_custom_code() # replace this line with your model loading code
tokenizer = load_your_tokenizer_with_custom_code() # replace this line with your tokenizer loading code
```
Then, run an attack with the argument `--model-from-file my_model.py`. The model and tokenizer will be loaded automatically.
### Custom Datasets
#### Dataset from a file
Loading a dataset from a file is very similar to loading a model from a file. A 'dataset' is any iterable of `(input, output)` pairs.
The following example would load a sentiment classification dataset from file `my_dataset.py`:
```python
dataset = [('Today was....', 1), ('This movie is...', 0), ...]
```
You can then run attacks on samples from this dataset by adding the argument `--dataset-from-file my_dataset.py`.
#### Dataset loading via other mechanism, see: [more details at here](https://textattack.readthedocs.io/en/latest/api/datasets.html)
```python
import textattack
my_dataset = [("text",label),....]
new_dataset = textattack.datasets.Dataset(my_dataset)
```
#### Dataset via AttackedText class
To allow for word replacement after a sequence has been tokenized, we include an `AttackedText` object
which maintains both a list of tokens and the original text, with punctuation. We use this object in favor of a list of words or just raw text.
### Attacks and how to design a new attack
We formulate an attack as consisting of four components: a **goal function** which determines if the attack has succeeded, **constraints** defining which perturbations are valid, a **transformation** that generates potential modifications given an input, and a **search method** which traverses through the search space of possible perturbations. The attack attempts to perturb an input text such that the model output fulfills the goal function (i.e., indicating whether the attack is successful) and the perturbation adheres to the set of constraints (e.g., grammar constraint, semantic similarity constraint). A search method is used to find a sequence of transformations that produce a successful adversarial example.
This modular design unifies adversarial attack methods into one system, enables us to easily assemble attacks from the literature while re-using components that are shared across attacks. We provides clean, readable implementations of 16 adversarial attack recipes from the literature (see above table). For the first time, these attacks can be benchmarked, compared, and analyzed in a standardized setting.
TextAttack is model-agnostic - meaning it can run attacks on models implemented in any deep learning framework. Model objects must be able to take a string (or list of strings) and return an output that can be processed by the goal function. For example, machine translation models take a list of strings as input and produce a list of strings as output. Classification and entailment models return an array of scores. As long as the user's model meets this specification, the model is fit to use with TextAttack.
#### Goal Functions
A `GoalFunction` takes as input an `AttackedText` object, scores it, and determines whether the attack has succeeded, returning a `GoalFunctionResult`.
#### Constraints
A `Constraint` takes as input a current `AttackedText`, and a list of transformed `AttackedText`s. For each transformed option, it returns a boolean representing whether the constraint is met.
#### Transformations
A `Transformation` takes as input an `AttackedText` and returns a list of possible transformed `AttackedText`s. For example, a transformation might return all possible synonym replacements.
#### Search Methods
A `SearchMethod` takes as input an initial `GoalFunctionResult` and returns a final `GoalFunctionResult` The search is given access to the `get_transformations` function, which takes as input an `AttackedText` object and outputs a list of possible transformations filtered by meeting all of the attack’s constraints. A search consists of successive calls to `get_transformations` until the search succeeds (determined using `get_goal_results`) or is exhausted.
## On Benchmarking Attacks
- See our analysis paper: Searching for a Search Method: Benchmarking Search Algorithms for Generating NLP Adversarial Examples at [EMNLP BlackBoxNLP](https://arxiv.org/abs/2009.06368).
- As we emphasized in the above paper, we don't recommend to directly compare Attack Recipes out of the box.
- This comment is due to that attack recipes in the recent literature used different ways or thresholds in setting up their constraints. Without the constraint space held constant, an increase in attack success rate could come from an improved search or transformation method or a less restrictive search space.
- Our Github on benchmarking scripts and results: [TextAttack-Search-Benchmark Github](https://github.com/QData/TextAttack-Search-Benchmark)
## On Quality of Generated Adversarial Examples in Natural Language
- Our analysis Paper in [EMNLP Findings](https://arxiv.org/abs/2004.14174)
- We analyze the generated adversarial examples of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences.With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.
- Our Github on Reevaluation results: [Reevaluating-NLP-Adversarial-Examples Github](https://github.com/QData/Reevaluating-NLP-Adversarial-Examples)
- As we have emphasized in this analysis paper, we recommend researchers and users to be EXTREMELY mindful on the quality of generated adversarial examples in natural language
- We recommend the field to use human-evaluation derived thresholds for setting up constraints
## Multi-lingual Support
- see example code: [https://github.com/QData/TextAttack/blob/master/examples/attack/attack_camembert.py](https://github.com/QData/TextAttack/blob/master/examples/attack/attack_camembert.py) for using our framework to attack French-BERT.
- see tutorial notebook: [https://textattack.readthedocs.io/en/latest/2notebook/Example_4_CamemBERT.html](https://textattack.readthedocs.io/en/latest/2notebook/Example_4_CamemBERT.html) for using our framework to attack French-BERT.
- See [README_ZH.md](https://github.com/QData/TextAttack/blob/master/README_ZH.md) for our README in Chinese
## Contributing to TextAttack
We welcome suggestions and contributions! Submit an issue or pull request and we will do our best to respond in a timely manner. TextAttack is currently in an "alpha" stage in which we are working to improve its capabilities and design.
See [CONTRIBUTING.md](https://github.com/QData/TextAttack/blob/master/CONTRIBUTING.md) for detailed information on contributing.
## Citing TextAttack
If you use TextAttack for your research, please cite [TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP](https://arxiv.org/abs/2005.05909).
```bibtex
@inproceedings{morris2020textattack,
title={TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP},
author={Morris, John and Lifland, Eli and Yoo, Jin Yong and Grigsby, Jake and Jin, Di and Qi, Yanjun},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages={119--126},
year={2020}
}
```
%package -n python3-textattack
Summary: A library for generating text adversarial examples
Provides: python-textattack
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-textattack
<h1 align="center">TextAttack 🐙</h1>
<p align="center">Generating adversarial examples for NLP models</p>
<p align="center">
<a href="https://textattack.readthedocs.io/">[TextAttack Documentation on ReadTheDocs]</a>
<br> <br>
<a href="#about">About</a> •
<a href="#setup">Setup</a> •
<a href="#usage">Usage</a> •
<a href="#design">Design</a>
<br> <br>
<a target="_blank">
<img src="https://github.com/QData/TextAttack/workflows/Github%20PyTest/badge.svg" alt="Github Runner Covergae Status">
</a>
<a href="https://badge.fury.io/py/textattack">
<img src="https://badge.fury.io/py/textattack.svg" alt="PyPI version" height="18">
</a>
</p>
<img src="https://jxmo.io/files/textattack.gif" alt="TextAttack Demo GIF" style="display: block; margin: 0 auto;" />
## About
TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
> If you're looking for information about TextAttack's menagerie of pre-trained models, you might want the [TextAttack Model Zoo](https://textattack.readthedocs.io/en/latest/3recipes/models.html) page.
## Slack Channel
For help and realtime updates related to TextAttack, please [join the TextAttack Slack](https://join.slack.com/t/textattack/shared_invite/zt-huomtd9z-KqdHBPPu2rOP~Z8q3~urgg)!
### *Why TextAttack?*
There are lots of reasons to use TextAttack:
1. **Understand NLP models better** by running different adversarial attacks on them and examining the output
2. **Research and develop different NLP adversarial attacks** using the TextAttack framework and library of components
3. **Augment your dataset** to increase model generalization and robustness downstream
3. **Train NLP models** using just a single command (all downloads included!)
## Setup
### Installation
You should be running Python 3.6+ to use this package. A CUDA-compatible GPU is optional but will greatly improve code speed. TextAttack is available through pip:
```bash
pip install textattack
```
Once TextAttack is installed, you can run it via command-line (`textattack ...`)
or via python module (`python -m textattack ...`).
> **Tip**: TextAttack downloads files to `~/.cache/textattack/` by default. This includes pretrained models,
> dataset samples, and the configuration file `config.yaml`. To change the cache path, set the
> environment variable `TA_CACHE_DIR`. (for example: `TA_CACHE_DIR=/tmp/ textattack attack ...`).
## Usage
### Help: `textattack --help`
TextAttack's main features can all be accessed via the `textattack` command. Two very
common commands are `textattack attack <args>`, and `textattack augment <args>`. You can see more
information about all commands using
```bash
textattack --help
```
or a specific command using, for example,
```bash
textattack attack --help
```
The [`examples/`](examples/) folder includes scripts showing common TextAttack usage for training models, running attacks, and augmenting a CSV file.
The [documentation website](https://textattack.readthedocs.io/en/latest) contains walkthroughs explaining basic usage of TextAttack, including building a custom transformation and a custom constraint..
### Running Attacks: `textattack attack --help`
The easiest way to try out an attack is via the command-line interface, `textattack attack`.
> **Tip:** If your machine has multiple GPUs, you can distribute the attack across them using the `--parallel` option. For some attacks, this can really help performance. (If you want to attack Keras models in parallel, please check out `examples/attack/attack_keras_parallel.py` instead)
Here are some concrete examples:
*TextFooler on BERT trained on the MR sentiment classification dataset*:
```bash
textattack attack --recipe textfooler --model bert-base-uncased-mr --num-examples 100
```
*DeepWordBug on DistilBERT trained on the Quora Question Pairs paraphrase identification dataset*:
```bash
textattack attack --model distilbert-base-uncased-cola --recipe deepwordbug --num-examples 100
```
*Beam search with beam width 4 and word embedding transformation and untargeted goal function on an LSTM*:
```bash
textattack attack --model lstm-mr --num-examples 20 \
--search-method beam-search^beam_width=4 --transformation word-swap-embedding \
--constraints repeat stopword max-words-perturbed^max_num_words=2 embedding^min_cos_sim=0.8 part-of-speech \
--goal-function untargeted-classification
```
> **Tip:** Instead of specifying a dataset and number of examples, you can pass `--interactive` to attack samples inputted by the user.
### Attacks and Papers Implemented ("Attack Recipes"): `textattack attack --recipe [recipe_name]`
We include attack recipes which implement attacks from the literature. You can list attack recipes using `textattack list attack-recipes`.
To run an attack recipe: `textattack attack --recipe [recipe_name]`
<img src="docs/_static/imgs/overview.png" alt="TextAttack Overview" style="display: block; margin: 0 auto;" />
<table style="width:100%" border="1">
<thead>
<tr class="header">
<th><strong>Attack Recipe Name</strong></th>
<th><strong>Goal Function</strong></th>
<th><strong>ConstraintsEnforced</strong></th>
<th><strong>Transformation</strong></th>
<th><strong>Search Method</strong></th>
<th><strong>Main Idea</strong></th>
</tr>
</thead>
<tbody>
<tr><td style="text-align: center;" colspan="6"><strong><br>Attacks on classification tasks, like sentiment classification and entailment:<br></strong></td></tr>
<tr>
<td><code>a2t</code>
<span class="citation" data-cites="yoo2021a2t"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Word embedding distance, DistilBERT sentence encoding cosine similarity, part-of-speech consistency</sub></td>
<td><sub>Counter-fitted word embedding swap (or) BERT Masked Token Prediction</sub></td>
<td><sub>Greedy-WIR (gradient)</sub></td>
<td ><sub>from (["Towards Improving Adversarial Training of NLP Models" (Yoo et al., 2021)](https://arxiv.org/abs/2109.00544))</sub></td>
</tr>
<tr>
<td><code>alzantot</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Language Model perplexity, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>from (["Generating Natural Language Adversarial Examples" (Alzantot et al., 2018)](https://arxiv.org/abs/1804.07998))</sub></td>
</tr>
<tr>
<td><code>bae</code> <span class="citation" data-cites="garg2020bae"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>BERT Masked Token Prediction</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>BERT masked language model transformation attack from (["BAE: BERT-based Adversarial Examples for Text Classification" (Garg & Ramakrishnan, 2019)](https://arxiv.org/abs/2004.01970)). </td>
</tr>
<tr>
<td><code>bert-attack</code> <span class="citation" data-cites="li2020bertattack"></span></td>
<td><sub>Untargeted Classification</td>
<td><sub>USE sentence encoding cosine similarity, Maximum number of words perturbed</td>
<td><sub>BERT Masked Token Prediction (with subword expansion)</td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub> (["BERT-ATTACK: Adversarial Attack Against BERT Using BERT" (Li et al., 2020)](https://arxiv.org/abs/2004.09984))</sub></td>
</tr>
<tr>
<td><code>checklist</code> <span class="citation" data-cites="Gao2018BlackBoxGO"></span></td>
<td><sub>{Untargeted, Targeted} Classification</sub></td>
<td><sub>checklist distance</sub></td>
<td><sub>contract, extend, and substitutes name entities</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Invariance testing implemented in CheckList . (["Beyond Accuracy: Behavioral Testing of NLP models with CheckList" (Ribeiro et al., 2020)](https://arxiv.org/abs/2005.04118))</sub></td>
</tr>
<tr>
<td> <code>clare</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>RoBERTa Masked Prediction for token swap, insert and merge</sub></td>
<td><sub>Greedy</sub></td>
<td ><sub>["Contextualized Perturbation for Textual Adversarial Attack" (Li et al., 2020)](https://arxiv.org/abs/2009.07502))</sub></td>
</tr>
<tr>
<td><code>deepwordbug</code> <span class="citation" data-cites="Gao2018BlackBoxGO"></span></td>
<td><sub>{Untargeted, Targeted} Classification</sub></td>
<td><sub>Levenshtein edit distance</sub></td>
<td><sub>{Character Insertion, Character Deletion, Neighboring Character Swap, Character Substitution}</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy replace-1 scoring and multi-transformation character-swap attack (["Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers" (Gao et al., 2018)](https://arxiv.org/abs/1801.04354)</sub></td>
</tr>
<tr>
<td> <code>fast-alzantot</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Language Model perplexity, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>Modified, faster version of the Alzantot et al. genetic algorithm, from (["Certified Robustness to Adversarial Word Substitutions" (Jia et al., 2019)](https://arxiv.org/abs/1909.00986))</sub></td>
</tr>
<tr>
<td><code>hotflip</code> (word swap) <span class="citation" data-cites="Ebrahimi2017HotFlipWA"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Word Embedding Cosine Similarity, Part-of-speech match, Number of words perturbed</sub></td>
<td><sub>Gradient-Based Word Swap</sub></td>
<td><sub>Beam search</sub></td>
<td ><sub> (["HotFlip: White-Box Adversarial Examples for Text Classification" (Ebrahimi et al., 2017)](https://arxiv.org/abs/1712.06751))</sub></td>
</tr>
<tr>
<td><code>iga</code> <span class="citation" data-cites="iga-wang2019natural"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>Improved genetic algorithm -based word substitution from (["Natural Language Adversarial Attacks and Defenses in Word Level (Wang et al., 2019)"](https://arxiv.org/abs/1909.06723)</sub></td>
</tr>
<tr>
<td><code>input-reduction</code> <span class="citation" data-cites="feng2018pathologies"></span></td>
<td><sub>Input Reduction</sub></td>
<td></td>
<td><sub>Word deletion</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with word importance ranking , Reducing the input while maintaining the prediction through word importance ranking (["Pathologies of Neural Models Make Interpretation Difficult" (Feng et al., 2018)](https://arxiv.org/pdf/1804.07781.pdf))</sub></td>
</tr>
<tr>
<td><code>kuleshov</code> <span class="citation" data-cites="Kuleshov2018AdversarialEF"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Thought vector encoding cosine similarity, Language model similarity probability</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Greedy word swap</sub></td>
<td ><sub>(["Adversarial Examples for Natural Language Classification Problems" (Kuleshov et al., 2018)](https://openreview.net/pdf?id=r1QZ3zbAZ)) </sub></td>
</tr>
<tr>
<td><code>pruthi</code> <span class="citation" data-cites="pruthi2019combating"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Minimum word length, Maximum number of words perturbed</sub></td>
<td><sub>{Neighboring Character Swap, Character Deletion, Character Insertion, Keyboard-Based Character Swap}</sub></td>
<td><sub>Greedy search</sub></td>
<td ><sub>simulates common typos (["Combating Adversarial Misspellings with Robust Word Recognition" (Pruthi et al., 2019)](https://arxiv.org/abs/1905.11268) </sub></td>
</tr>
<tr>
<td><code>pso</code> <span class="citation" data-cites="pso-zang-etal-2020-word"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td></td>
<td><sub>HowNet Word Swap</sub></td>
<td><sub>Particle Swarm Optimization</sub></td>
<td ><sub>(["Word-level Textual Adversarial Attacking as Combinatorial Optimization" (Zang et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.540/)) </sub></td>
</tr>
<tr>
<td><code>pwws</code> <span class="citation" data-cites="pwws-ren-etal-2019-generating"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td></td>
<td><sub>WordNet-based synonym swap</sub></td>
<td><sub>Greedy-WIR (saliency)</sub></td>
<td ><sub>Greedy attack with word importance ranking based on word saliency and synonym swap scores (["Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency" (Ren et al., 2019)](https://www.aclweb.org/anthology/P19-1103/))</sub> </td>
</tr>
<tr>
<td><code>textbugger</code> : (black-box) <span class="citation" data-cites="Li2019TextBuggerGA"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>{Character Insertion, Character Deletion, Neighboring Character Swap, Character Substitution}</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>([(["TextBugger: Generating Adversarial Text Against Real-world Applications" (Li et al., 2018)](https://arxiv.org/abs/1812.05271)).</sub></td>
</tr>
<tr>
<td><code>textfooler</code> <span class="citation" data-cites="Jin2019TextFooler"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Word Embedding Distance, Part-of-speech match, USE sentence encoding cosine similarity</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with word importance ranking (["Is Bert Really Robust?" (Jin et al., 2019)](https://arxiv.org/abs/1907.11932))</sub> </td>
</tr>
<tr><td style="text-align: center;" colspan="6"><strong><br>Attacks on sequence-to-sequence models: <br></strong></td></tr>
<tr>
<td><code>morpheus</code> <span class="citation" data-cites="morpheus-tan-etal-2020-morphin"></span></td>
<td><sub>Minimum BLEU Score</sub> </td>
<td></td>
<td><sub>Inflection Word Swap</sub> </td>
<td><sub>Greedy search</sub> </td>
<td ><sub>Greedy to replace words with their inflections with the goal of minimizing BLEU score (["It’s Morphin’ Time! Combating Linguistic Discrimination with Inflectional Perturbations"](https://www.aclweb.org/anthology/2020.acl-main.263.pdf)</sub> </td>
</tr>
</tr>
<tr>
<td><code>seq2sick</code> :(black-box) <span class="citation" data-cites="cheng2018seq2sick"></span></td>
<td><sub>Non-overlapping output</sub> </td>
<td></td>
<td><sub>Counter-fitted word embedding swap</sub> </td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with goal of changing every word in the output translation. Currently implemented as black-box with plans to change to white-box as done in paper (["Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples" (Cheng et al., 2018)](https://arxiv.org/abs/1803.01128)) </sub> </td>
</tr>
</tbody>
</font>
</table>
#### Recipe Usage Examples
Here are some examples of testing attacks from the literature from the command-line:
*TextFooler against BERT fine-tuned on SST-2:*
```bash
textattack attack --model bert-base-uncased-sst2 --recipe textfooler --num-examples 10
```
*seq2sick (black-box) against T5 fine-tuned for English-German translation:*
```bash
textattack attack --model t5-en-de --recipe seq2sick --num-examples 100
```
### Augmenting Text: `textattack augment`
Many of the components of TextAttack are useful for data augmentation. The `textattack.Augmenter` class
uses a transformation and a list of constraints to augment data. We also offer built-in recipes
for data augmentation:
- `wordnet` augments text by replacing words with WordNet synonyms
- `embedding` augments text by replacing words with neighbors in the counter-fitted embedding space, with a constraint to ensure their cosine similarity is at least 0.8
- `charswap` augments text by substituting, deleting, inserting, and swapping adjacent characters
- `eda` augments text with a combination of word insertions, substitutions and deletions.
- `checklist` augments text by contraction/extension and by substituting names, locations, numbers.
- `clare` augments text by replacing, inserting, and merging with a pre-trained masked language model.
#### Augmentation Command-Line Interface
The easiest way to use our data augmentation tools is with `textattack augment <args>`. `textattack augment`
takes an input CSV file and text column to augment, along with the number of words to change per augmentation
and the number of augmentations per input example. It outputs a CSV in the same format with all the augmentation
examples corresponding to the proper columns.
For example, given the following as `examples.csv`:
```csv
"text",label
"the rock is destined to be the 21st century's new conan and that he's going to make a splash even greater than arnold schwarzenegger , jean- claud van damme or steven segal.", 1
"the gorgeously elaborate continuation of 'the lord of the rings' trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .", 1
"take care of my cat offers a refreshingly different slice of asian cinema .", 1
"a technically well-made suspenser . . . but its abrupt drop in iq points as it races to the finish line proves simply too discouraging to let slide .", 0
"it's a mystery how the movie could be released in this condition .", 0
```
The command
```bash
textattack augment --input-csv examples.csv --output-csv output.csv --input-column text --recipe embedding --pct-words-to-swap .1 --transformations-per-example 2 --exclude-original
```
will augment the `text` column by altering 10% of each example's words, generating twice as many augmentations as original inputs, and exclude the original inputs from the
output CSV. (All of this will be saved to `augment.csv` by default.)
> **Tip:** Just as running attacks interactively, you can also pass `--interactive` to augment samples inputted by the user to quickly try out different augmentation recipes!
After augmentation, here are the contents of `augment.csv`:
```csv
text,label
"the rock is destined to be the 21st century's newest conan and that he's gonna to make a splashing even stronger than arnold schwarzenegger , jean- claud van damme or steven segal.",1
"the rock is destined to be the 21tk century's novel conan and that he's going to make a splat even greater than arnold schwarzenegger , jean- claud van damme or stevens segal.",1
the gorgeously elaborate continuation of 'the lord of the rings' trilogy is so huge that a column of expression significant adequately describe co-writer/director pedro jackson's expanded vision of j . rs . r . tolkien's middle-earth .,1
the gorgeously elaborate continuation of 'the lordy of the piercings' trilogy is so huge that a column of mots cannot adequately describe co-novelist/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .,1
take care of my cat offerings a pleasantly several slice of asia cinema .,1
taking care of my cat offers a pleasantly different slice of asiatic kino .,1
a technically good-made suspenser . . . but its abrupt drop in iq points as it races to the finish bloodline proves straightforward too disheartening to let slide .,0
a technically well-made suspenser . . . but its abrupt drop in iq dot as it races to the finish line demonstrates simply too disheartening to leave slide .,0
it's a enigma how the film wo be releases in this condition .,0
it's a enigma how the filmmaking wo be publicized in this condition .,0
```
The 'embedding' augmentation recipe uses counterfitted embedding nearest-neighbors to augment data.
#### Augmentation Python Interface
In addition to the command-line interface, you can augment text dynamically by importing the
`Augmenter` in your own code. All `Augmenter` objects implement `augment` and `augment_many` to generate augmentations
of a string or a list of strings. Here's an example of how to use the `EmbeddingAugmenter` in a python script:
```python
>>> from textattack.augmentation import EmbeddingAugmenter
>>> augmenter = EmbeddingAugmenter()
>>> s = 'What I cannot create, I do not understand.'
>>> augmenter.augment(s)
['What I notable create, I do not understand.', 'What I significant create, I do not understand.', 'What I cannot engender, I do not understand.', 'What I cannot creating, I do not understand.', 'What I cannot creations, I do not understand.', 'What I cannot create, I do not comprehend.', 'What I cannot create, I do not fathom.', 'What I cannot create, I do not understanding.', 'What I cannot create, I do not understands.', 'What I cannot create, I do not understood.', 'What I cannot create, I do not realise.']
```
You can also create your own augmenter from scratch by importing transformations/constraints from `textattack.transformations` and `textattack.constraints`. Here's an example that generates augmentations of a string using `WordSwapRandomCharacterDeletion`:
```python
>>> from textattack.transformations import WordSwapRandomCharacterDeletion
>>> from textattack.transformations import CompositeTransformation
>>> from textattack.augmentation import Augmenter
>>> transformation = CompositeTransformation([WordSwapRandomCharacterDeletion()])
>>> augmenter = Augmenter(transformation=transformation, transformations_per_example=5)
>>> s = 'What I cannot create, I do not understand.'
>>> augmenter.augment(s)
['What I cannot creae, I do not understand.', 'What I cannot creat, I do not understand.', 'What I cannot create, I do not nderstand.', 'What I cannot create, I do nt understand.', 'Wht I cannot create, I do not understand.']
```
### Training Models: `textattack train`
Our model training code is available via `textattack train` to help you train LSTMs,
CNNs, and `transformers` models using TextAttack out-of-the-box. Datasets are
automatically loaded using the `datasets` package.
#### Training Examples
*Train our default LSTM for 50 epochs on the Yelp Polarity dataset:*
```bash
textattack train --model-name-or-path lstm --dataset yelp_polarity --epochs 50 --learning-rate 1e-5
```
*Fine-Tune `bert-base` on the `CoLA` dataset for 5 epochs**:
```bash
textattack train --model-name-or-path bert-base-uncased --dataset glue^cola --per-device-train-batch-size 8 --epochs 5
```
### To check datasets: `textattack peek-dataset`
To take a closer look at a dataset, use `textattack peek-dataset`. TextAttack will print some cursory statistics about the inputs and outputs from the dataset. For example,
```bash
textattack peek-dataset --dataset-from-huggingface snli
```
will show information about the SNLI dataset from the NLP package.
### To list functional components: `textattack list`
There are lots of pieces in TextAttack, and it can be difficult to keep track of all of them. You can use `textattack list` to list components, for example, pretrained models (`textattack list models`) or available search methods (`textattack list search-methods`).
## Design
### Models
TextAttack is model-agnostic! You can use `TextAttack` to analyze any model that outputs IDs, tensors, or strings. To help users, TextAttack includes pre-trained models for different common NLP tasks. This makes it easier for
users to get started with TextAttack. It also enables a more fair comparison of attacks from
the literature.
#### Built-in Models and Datasets
TextAttack also comes built-in with models and datasets. Our command-line interface will automatically match the correct
dataset to the correct model. We include 82 different (Oct 2020) pre-trained models for each of the nine [GLUE](https://gluebenchmark.com/)
tasks, as well as some common datasets for classification, translation, and summarization.
A list of available pretrained models and their validation accuracies is available at
[textattack/models/README.md](textattack/models/README.md). You can also view a full list of provided models
& datasets via `textattack attack --help`.
Here's an example of using one of the built-in models (the SST-2 dataset is automatically loaded):
```bash
textattack attack --model roberta-base-sst2 --recipe textfooler --num-examples 10
```
#### HuggingFace support: `transformers` models and `datasets` datasets
We also provide built-in support for [`transformers` pretrained models](https://huggingface.co/models)
and datasets from the [`datasets` package](https://github.com/huggingface/datasets)! Here's an example of loading
and attacking a pre-trained model and dataset:
```bash
textattack attack --model-from-huggingface distilbert-base-uncased-finetuned-sst-2-english --dataset-from-huggingface glue^sst2 --recipe deepwordbug --num-examples 10
```
You can explore other pre-trained models using the `--model-from-huggingface` argument, or other datasets by changing
`--dataset-from-huggingface`.
#### Loading a model or dataset from a file
You can easily try out an attack on a local model or dataset sample. To attack a pre-trained model,
create a short file that loads them as variables `model` and `tokenizer`. The `tokenizer` must
be able to transform string inputs to lists or tensors of IDs using a method called `encode()`. The
model must take inputs via the `__call__` method.
##### Custom Model from a file
To experiment with a model you've trained, you could create the following file
and name it `my_model.py`:
```python
model = load_your_model_with_custom_code() # replace this line with your model loading code
tokenizer = load_your_tokenizer_with_custom_code() # replace this line with your tokenizer loading code
```
Then, run an attack with the argument `--model-from-file my_model.py`. The model and tokenizer will be loaded automatically.
### Custom Datasets
#### Dataset from a file
Loading a dataset from a file is very similar to loading a model from a file. A 'dataset' is any iterable of `(input, output)` pairs.
The following example would load a sentiment classification dataset from file `my_dataset.py`:
```python
dataset = [('Today was....', 1), ('This movie is...', 0), ...]
```
You can then run attacks on samples from this dataset by adding the argument `--dataset-from-file my_dataset.py`.
#### Dataset loading via other mechanism, see: [more details at here](https://textattack.readthedocs.io/en/latest/api/datasets.html)
```python
import textattack
my_dataset = [("text",label),....]
new_dataset = textattack.datasets.Dataset(my_dataset)
```
#### Dataset via AttackedText class
To allow for word replacement after a sequence has been tokenized, we include an `AttackedText` object
which maintains both a list of tokens and the original text, with punctuation. We use this object in favor of a list of words or just raw text.
### Attacks and how to design a new attack
We formulate an attack as consisting of four components: a **goal function** which determines if the attack has succeeded, **constraints** defining which perturbations are valid, a **transformation** that generates potential modifications given an input, and a **search method** which traverses through the search space of possible perturbations. The attack attempts to perturb an input text such that the model output fulfills the goal function (i.e., indicating whether the attack is successful) and the perturbation adheres to the set of constraints (e.g., grammar constraint, semantic similarity constraint). A search method is used to find a sequence of transformations that produce a successful adversarial example.
This modular design unifies adversarial attack methods into one system, enables us to easily assemble attacks from the literature while re-using components that are shared across attacks. We provides clean, readable implementations of 16 adversarial attack recipes from the literature (see above table). For the first time, these attacks can be benchmarked, compared, and analyzed in a standardized setting.
TextAttack is model-agnostic - meaning it can run attacks on models implemented in any deep learning framework. Model objects must be able to take a string (or list of strings) and return an output that can be processed by the goal function. For example, machine translation models take a list of strings as input and produce a list of strings as output. Classification and entailment models return an array of scores. As long as the user's model meets this specification, the model is fit to use with TextAttack.
#### Goal Functions
A `GoalFunction` takes as input an `AttackedText` object, scores it, and determines whether the attack has succeeded, returning a `GoalFunctionResult`.
#### Constraints
A `Constraint` takes as input a current `AttackedText`, and a list of transformed `AttackedText`s. For each transformed option, it returns a boolean representing whether the constraint is met.
#### Transformations
A `Transformation` takes as input an `AttackedText` and returns a list of possible transformed `AttackedText`s. For example, a transformation might return all possible synonym replacements.
#### Search Methods
A `SearchMethod` takes as input an initial `GoalFunctionResult` and returns a final `GoalFunctionResult` The search is given access to the `get_transformations` function, which takes as input an `AttackedText` object and outputs a list of possible transformations filtered by meeting all of the attack’s constraints. A search consists of successive calls to `get_transformations` until the search succeeds (determined using `get_goal_results`) or is exhausted.
## On Benchmarking Attacks
- See our analysis paper: Searching for a Search Method: Benchmarking Search Algorithms for Generating NLP Adversarial Examples at [EMNLP BlackBoxNLP](https://arxiv.org/abs/2009.06368).
- As we emphasized in the above paper, we don't recommend to directly compare Attack Recipes out of the box.
- This comment is due to that attack recipes in the recent literature used different ways or thresholds in setting up their constraints. Without the constraint space held constant, an increase in attack success rate could come from an improved search or transformation method or a less restrictive search space.
- Our Github on benchmarking scripts and results: [TextAttack-Search-Benchmark Github](https://github.com/QData/TextAttack-Search-Benchmark)
## On Quality of Generated Adversarial Examples in Natural Language
- Our analysis Paper in [EMNLP Findings](https://arxiv.org/abs/2004.14174)
- We analyze the generated adversarial examples of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences.With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.
- Our Github on Reevaluation results: [Reevaluating-NLP-Adversarial-Examples Github](https://github.com/QData/Reevaluating-NLP-Adversarial-Examples)
- As we have emphasized in this analysis paper, we recommend researchers and users to be EXTREMELY mindful on the quality of generated adversarial examples in natural language
- We recommend the field to use human-evaluation derived thresholds for setting up constraints
## Multi-lingual Support
- see example code: [https://github.com/QData/TextAttack/blob/master/examples/attack/attack_camembert.py](https://github.com/QData/TextAttack/blob/master/examples/attack/attack_camembert.py) for using our framework to attack French-BERT.
- see tutorial notebook: [https://textattack.readthedocs.io/en/latest/2notebook/Example_4_CamemBERT.html](https://textattack.readthedocs.io/en/latest/2notebook/Example_4_CamemBERT.html) for using our framework to attack French-BERT.
- See [README_ZH.md](https://github.com/QData/TextAttack/blob/master/README_ZH.md) for our README in Chinese
## Contributing to TextAttack
We welcome suggestions and contributions! Submit an issue or pull request and we will do our best to respond in a timely manner. TextAttack is currently in an "alpha" stage in which we are working to improve its capabilities and design.
See [CONTRIBUTING.md](https://github.com/QData/TextAttack/blob/master/CONTRIBUTING.md) for detailed information on contributing.
## Citing TextAttack
If you use TextAttack for your research, please cite [TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP](https://arxiv.org/abs/2005.05909).
```bibtex
@inproceedings{morris2020textattack,
title={TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP},
author={Morris, John and Lifland, Eli and Yoo, Jin Yong and Grigsby, Jake and Jin, Di and Qi, Yanjun},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages={119--126},
year={2020}
}
```
%package help
Summary: Development documents and examples for textattack
Provides: python3-textattack-doc
%description help
<h1 align="center">TextAttack 🐙</h1>
<p align="center">Generating adversarial examples for NLP models</p>
<p align="center">
<a href="https://textattack.readthedocs.io/">[TextAttack Documentation on ReadTheDocs]</a>
<br> <br>
<a href="#about">About</a> •
<a href="#setup">Setup</a> •
<a href="#usage">Usage</a> •
<a href="#design">Design</a>
<br> <br>
<a target="_blank">
<img src="https://github.com/QData/TextAttack/workflows/Github%20PyTest/badge.svg" alt="Github Runner Covergae Status">
</a>
<a href="https://badge.fury.io/py/textattack">
<img src="https://badge.fury.io/py/textattack.svg" alt="PyPI version" height="18">
</a>
</p>
<img src="https://jxmo.io/files/textattack.gif" alt="TextAttack Demo GIF" style="display: block; margin: 0 auto;" />
## About
TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
> If you're looking for information about TextAttack's menagerie of pre-trained models, you might want the [TextAttack Model Zoo](https://textattack.readthedocs.io/en/latest/3recipes/models.html) page.
## Slack Channel
For help and realtime updates related to TextAttack, please [join the TextAttack Slack](https://join.slack.com/t/textattack/shared_invite/zt-huomtd9z-KqdHBPPu2rOP~Z8q3~urgg)!
### *Why TextAttack?*
There are lots of reasons to use TextAttack:
1. **Understand NLP models better** by running different adversarial attacks on them and examining the output
2. **Research and develop different NLP adversarial attacks** using the TextAttack framework and library of components
3. **Augment your dataset** to increase model generalization and robustness downstream
3. **Train NLP models** using just a single command (all downloads included!)
## Setup
### Installation
You should be running Python 3.6+ to use this package. A CUDA-compatible GPU is optional but will greatly improve code speed. TextAttack is available through pip:
```bash
pip install textattack
```
Once TextAttack is installed, you can run it via command-line (`textattack ...`)
or via python module (`python -m textattack ...`).
> **Tip**: TextAttack downloads files to `~/.cache/textattack/` by default. This includes pretrained models,
> dataset samples, and the configuration file `config.yaml`. To change the cache path, set the
> environment variable `TA_CACHE_DIR`. (for example: `TA_CACHE_DIR=/tmp/ textattack attack ...`).
## Usage
### Help: `textattack --help`
TextAttack's main features can all be accessed via the `textattack` command. Two very
common commands are `textattack attack <args>`, and `textattack augment <args>`. You can see more
information about all commands using
```bash
textattack --help
```
or a specific command using, for example,
```bash
textattack attack --help
```
The [`examples/`](examples/) folder includes scripts showing common TextAttack usage for training models, running attacks, and augmenting a CSV file.
The [documentation website](https://textattack.readthedocs.io/en/latest) contains walkthroughs explaining basic usage of TextAttack, including building a custom transformation and a custom constraint..
### Running Attacks: `textattack attack --help`
The easiest way to try out an attack is via the command-line interface, `textattack attack`.
> **Tip:** If your machine has multiple GPUs, you can distribute the attack across them using the `--parallel` option. For some attacks, this can really help performance. (If you want to attack Keras models in parallel, please check out `examples/attack/attack_keras_parallel.py` instead)
Here are some concrete examples:
*TextFooler on BERT trained on the MR sentiment classification dataset*:
```bash
textattack attack --recipe textfooler --model bert-base-uncased-mr --num-examples 100
```
*DeepWordBug on DistilBERT trained on the Quora Question Pairs paraphrase identification dataset*:
```bash
textattack attack --model distilbert-base-uncased-cola --recipe deepwordbug --num-examples 100
```
*Beam search with beam width 4 and word embedding transformation and untargeted goal function on an LSTM*:
```bash
textattack attack --model lstm-mr --num-examples 20 \
--search-method beam-search^beam_width=4 --transformation word-swap-embedding \
--constraints repeat stopword max-words-perturbed^max_num_words=2 embedding^min_cos_sim=0.8 part-of-speech \
--goal-function untargeted-classification
```
> **Tip:** Instead of specifying a dataset and number of examples, you can pass `--interactive` to attack samples inputted by the user.
### Attacks and Papers Implemented ("Attack Recipes"): `textattack attack --recipe [recipe_name]`
We include attack recipes which implement attacks from the literature. You can list attack recipes using `textattack list attack-recipes`.
To run an attack recipe: `textattack attack --recipe [recipe_name]`
<img src="docs/_static/imgs/overview.png" alt="TextAttack Overview" style="display: block; margin: 0 auto;" />
<table style="width:100%" border="1">
<thead>
<tr class="header">
<th><strong>Attack Recipe Name</strong></th>
<th><strong>Goal Function</strong></th>
<th><strong>ConstraintsEnforced</strong></th>
<th><strong>Transformation</strong></th>
<th><strong>Search Method</strong></th>
<th><strong>Main Idea</strong></th>
</tr>
</thead>
<tbody>
<tr><td style="text-align: center;" colspan="6"><strong><br>Attacks on classification tasks, like sentiment classification and entailment:<br></strong></td></tr>
<tr>
<td><code>a2t</code>
<span class="citation" data-cites="yoo2021a2t"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Word embedding distance, DistilBERT sentence encoding cosine similarity, part-of-speech consistency</sub></td>
<td><sub>Counter-fitted word embedding swap (or) BERT Masked Token Prediction</sub></td>
<td><sub>Greedy-WIR (gradient)</sub></td>
<td ><sub>from (["Towards Improving Adversarial Training of NLP Models" (Yoo et al., 2021)](https://arxiv.org/abs/2109.00544))</sub></td>
</tr>
<tr>
<td><code>alzantot</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Language Model perplexity, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>from (["Generating Natural Language Adversarial Examples" (Alzantot et al., 2018)](https://arxiv.org/abs/1804.07998))</sub></td>
</tr>
<tr>
<td><code>bae</code> <span class="citation" data-cites="garg2020bae"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>BERT Masked Token Prediction</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>BERT masked language model transformation attack from (["BAE: BERT-based Adversarial Examples for Text Classification" (Garg & Ramakrishnan, 2019)](https://arxiv.org/abs/2004.01970)). </td>
</tr>
<tr>
<td><code>bert-attack</code> <span class="citation" data-cites="li2020bertattack"></span></td>
<td><sub>Untargeted Classification</td>
<td><sub>USE sentence encoding cosine similarity, Maximum number of words perturbed</td>
<td><sub>BERT Masked Token Prediction (with subword expansion)</td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub> (["BERT-ATTACK: Adversarial Attack Against BERT Using BERT" (Li et al., 2020)](https://arxiv.org/abs/2004.09984))</sub></td>
</tr>
<tr>
<td><code>checklist</code> <span class="citation" data-cites="Gao2018BlackBoxGO"></span></td>
<td><sub>{Untargeted, Targeted} Classification</sub></td>
<td><sub>checklist distance</sub></td>
<td><sub>contract, extend, and substitutes name entities</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Invariance testing implemented in CheckList . (["Beyond Accuracy: Behavioral Testing of NLP models with CheckList" (Ribeiro et al., 2020)](https://arxiv.org/abs/2005.04118))</sub></td>
</tr>
<tr>
<td> <code>clare</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>RoBERTa Masked Prediction for token swap, insert and merge</sub></td>
<td><sub>Greedy</sub></td>
<td ><sub>["Contextualized Perturbation for Textual Adversarial Attack" (Li et al., 2020)](https://arxiv.org/abs/2009.07502))</sub></td>
</tr>
<tr>
<td><code>deepwordbug</code> <span class="citation" data-cites="Gao2018BlackBoxGO"></span></td>
<td><sub>{Untargeted, Targeted} Classification</sub></td>
<td><sub>Levenshtein edit distance</sub></td>
<td><sub>{Character Insertion, Character Deletion, Neighboring Character Swap, Character Substitution}</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy replace-1 scoring and multi-transformation character-swap attack (["Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers" (Gao et al., 2018)](https://arxiv.org/abs/1801.04354)</sub></td>
</tr>
<tr>
<td> <code>fast-alzantot</code> <span class="citation" data-cites="Alzantot2018GeneratingNL Jia2019CertifiedRT"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Language Model perplexity, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>Modified, faster version of the Alzantot et al. genetic algorithm, from (["Certified Robustness to Adversarial Word Substitutions" (Jia et al., 2019)](https://arxiv.org/abs/1909.00986))</sub></td>
</tr>
<tr>
<td><code>hotflip</code> (word swap) <span class="citation" data-cites="Ebrahimi2017HotFlipWA"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Word Embedding Cosine Similarity, Part-of-speech match, Number of words perturbed</sub></td>
<td><sub>Gradient-Based Word Swap</sub></td>
<td><sub>Beam search</sub></td>
<td ><sub> (["HotFlip: White-Box Adversarial Examples for Text Classification" (Ebrahimi et al., 2017)](https://arxiv.org/abs/1712.06751))</sub></td>
</tr>
<tr>
<td><code>iga</code> <span class="citation" data-cites="iga-wang2019natural"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Percentage of words perturbed, Word embedding distance</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Genetic Algorithm</sub></td>
<td ><sub>Improved genetic algorithm -based word substitution from (["Natural Language Adversarial Attacks and Defenses in Word Level (Wang et al., 2019)"](https://arxiv.org/abs/1909.06723)</sub></td>
</tr>
<tr>
<td><code>input-reduction</code> <span class="citation" data-cites="feng2018pathologies"></span></td>
<td><sub>Input Reduction</sub></td>
<td></td>
<td><sub>Word deletion</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with word importance ranking , Reducing the input while maintaining the prediction through word importance ranking (["Pathologies of Neural Models Make Interpretation Difficult" (Feng et al., 2018)](https://arxiv.org/pdf/1804.07781.pdf))</sub></td>
</tr>
<tr>
<td><code>kuleshov</code> <span class="citation" data-cites="Kuleshov2018AdversarialEF"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Thought vector encoding cosine similarity, Language model similarity probability</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Greedy word swap</sub></td>
<td ><sub>(["Adversarial Examples for Natural Language Classification Problems" (Kuleshov et al., 2018)](https://openreview.net/pdf?id=r1QZ3zbAZ)) </sub></td>
</tr>
<tr>
<td><code>pruthi</code> <span class="citation" data-cites="pruthi2019combating"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>Minimum word length, Maximum number of words perturbed</sub></td>
<td><sub>{Neighboring Character Swap, Character Deletion, Character Insertion, Keyboard-Based Character Swap}</sub></td>
<td><sub>Greedy search</sub></td>
<td ><sub>simulates common typos (["Combating Adversarial Misspellings with Robust Word Recognition" (Pruthi et al., 2019)](https://arxiv.org/abs/1905.11268) </sub></td>
</tr>
<tr>
<td><code>pso</code> <span class="citation" data-cites="pso-zang-etal-2020-word"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td></td>
<td><sub>HowNet Word Swap</sub></td>
<td><sub>Particle Swarm Optimization</sub></td>
<td ><sub>(["Word-level Textual Adversarial Attacking as Combinatorial Optimization" (Zang et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.540/)) </sub></td>
</tr>
<tr>
<td><code>pwws</code> <span class="citation" data-cites="pwws-ren-etal-2019-generating"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td></td>
<td><sub>WordNet-based synonym swap</sub></td>
<td><sub>Greedy-WIR (saliency)</sub></td>
<td ><sub>Greedy attack with word importance ranking based on word saliency and synonym swap scores (["Generating Natural Language Adversarial Examples through Probability Weighted Word Saliency" (Ren et al., 2019)](https://www.aclweb.org/anthology/P19-1103/))</sub> </td>
</tr>
<tr>
<td><code>textbugger</code> : (black-box) <span class="citation" data-cites="Li2019TextBuggerGA"></span></td>
<td><sub>Untargeted Classification</sub></td>
<td><sub>USE sentence encoding cosine similarity</sub></td>
<td><sub>{Character Insertion, Character Deletion, Neighboring Character Swap, Character Substitution}</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>([(["TextBugger: Generating Adversarial Text Against Real-world Applications" (Li et al., 2018)](https://arxiv.org/abs/1812.05271)).</sub></td>
</tr>
<tr>
<td><code>textfooler</code> <span class="citation" data-cites="Jin2019TextFooler"></span></td>
<td><sub>Untargeted {Classification, Entailment}</sub></td>
<td><sub>Word Embedding Distance, Part-of-speech match, USE sentence encoding cosine similarity</sub></td>
<td><sub>Counter-fitted word embedding swap</sub></td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with word importance ranking (["Is Bert Really Robust?" (Jin et al., 2019)](https://arxiv.org/abs/1907.11932))</sub> </td>
</tr>
<tr><td style="text-align: center;" colspan="6"><strong><br>Attacks on sequence-to-sequence models: <br></strong></td></tr>
<tr>
<td><code>morpheus</code> <span class="citation" data-cites="morpheus-tan-etal-2020-morphin"></span></td>
<td><sub>Minimum BLEU Score</sub> </td>
<td></td>
<td><sub>Inflection Word Swap</sub> </td>
<td><sub>Greedy search</sub> </td>
<td ><sub>Greedy to replace words with their inflections with the goal of minimizing BLEU score (["It’s Morphin’ Time! Combating Linguistic Discrimination with Inflectional Perturbations"](https://www.aclweb.org/anthology/2020.acl-main.263.pdf)</sub> </td>
</tr>
</tr>
<tr>
<td><code>seq2sick</code> :(black-box) <span class="citation" data-cites="cheng2018seq2sick"></span></td>
<td><sub>Non-overlapping output</sub> </td>
<td></td>
<td><sub>Counter-fitted word embedding swap</sub> </td>
<td><sub>Greedy-WIR</sub></td>
<td ><sub>Greedy attack with goal of changing every word in the output translation. Currently implemented as black-box with plans to change to white-box as done in paper (["Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples" (Cheng et al., 2018)](https://arxiv.org/abs/1803.01128)) </sub> </td>
</tr>
</tbody>
</font>
</table>
#### Recipe Usage Examples
Here are some examples of testing attacks from the literature from the command-line:
*TextFooler against BERT fine-tuned on SST-2:*
```bash
textattack attack --model bert-base-uncased-sst2 --recipe textfooler --num-examples 10
```
*seq2sick (black-box) against T5 fine-tuned for English-German translation:*
```bash
textattack attack --model t5-en-de --recipe seq2sick --num-examples 100
```
### Augmenting Text: `textattack augment`
Many of the components of TextAttack are useful for data augmentation. The `textattack.Augmenter` class
uses a transformation and a list of constraints to augment data. We also offer built-in recipes
for data augmentation:
- `wordnet` augments text by replacing words with WordNet synonyms
- `embedding` augments text by replacing words with neighbors in the counter-fitted embedding space, with a constraint to ensure their cosine similarity is at least 0.8
- `charswap` augments text by substituting, deleting, inserting, and swapping adjacent characters
- `eda` augments text with a combination of word insertions, substitutions and deletions.
- `checklist` augments text by contraction/extension and by substituting names, locations, numbers.
- `clare` augments text by replacing, inserting, and merging with a pre-trained masked language model.
#### Augmentation Command-Line Interface
The easiest way to use our data augmentation tools is with `textattack augment <args>`. `textattack augment`
takes an input CSV file and text column to augment, along with the number of words to change per augmentation
and the number of augmentations per input example. It outputs a CSV in the same format with all the augmentation
examples corresponding to the proper columns.
For example, given the following as `examples.csv`:
```csv
"text",label
"the rock is destined to be the 21st century's new conan and that he's going to make a splash even greater than arnold schwarzenegger , jean- claud van damme or steven segal.", 1
"the gorgeously elaborate continuation of 'the lord of the rings' trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .", 1
"take care of my cat offers a refreshingly different slice of asian cinema .", 1
"a technically well-made suspenser . . . but its abrupt drop in iq points as it races to the finish line proves simply too discouraging to let slide .", 0
"it's a mystery how the movie could be released in this condition .", 0
```
The command
```bash
textattack augment --input-csv examples.csv --output-csv output.csv --input-column text --recipe embedding --pct-words-to-swap .1 --transformations-per-example 2 --exclude-original
```
will augment the `text` column by altering 10% of each example's words, generating twice as many augmentations as original inputs, and exclude the original inputs from the
output CSV. (All of this will be saved to `augment.csv` by default.)
> **Tip:** Just as running attacks interactively, you can also pass `--interactive` to augment samples inputted by the user to quickly try out different augmentation recipes!
After augmentation, here are the contents of `augment.csv`:
```csv
text,label
"the rock is destined to be the 21st century's newest conan and that he's gonna to make a splashing even stronger than arnold schwarzenegger , jean- claud van damme or steven segal.",1
"the rock is destined to be the 21tk century's novel conan and that he's going to make a splat even greater than arnold schwarzenegger , jean- claud van damme or stevens segal.",1
the gorgeously elaborate continuation of 'the lord of the rings' trilogy is so huge that a column of expression significant adequately describe co-writer/director pedro jackson's expanded vision of j . rs . r . tolkien's middle-earth .,1
the gorgeously elaborate continuation of 'the lordy of the piercings' trilogy is so huge that a column of mots cannot adequately describe co-novelist/director peter jackson's expanded vision of j . r . r . tolkien's middle-earth .,1
take care of my cat offerings a pleasantly several slice of asia cinema .,1
taking care of my cat offers a pleasantly different slice of asiatic kino .,1
a technically good-made suspenser . . . but its abrupt drop in iq points as it races to the finish bloodline proves straightforward too disheartening to let slide .,0
a technically well-made suspenser . . . but its abrupt drop in iq dot as it races to the finish line demonstrates simply too disheartening to leave slide .,0
it's a enigma how the film wo be releases in this condition .,0
it's a enigma how the filmmaking wo be publicized in this condition .,0
```
The 'embedding' augmentation recipe uses counterfitted embedding nearest-neighbors to augment data.
#### Augmentation Python Interface
In addition to the command-line interface, you can augment text dynamically by importing the
`Augmenter` in your own code. All `Augmenter` objects implement `augment` and `augment_many` to generate augmentations
of a string or a list of strings. Here's an example of how to use the `EmbeddingAugmenter` in a python script:
```python
>>> from textattack.augmentation import EmbeddingAugmenter
>>> augmenter = EmbeddingAugmenter()
>>> s = 'What I cannot create, I do not understand.'
>>> augmenter.augment(s)
['What I notable create, I do not understand.', 'What I significant create, I do not understand.', 'What I cannot engender, I do not understand.', 'What I cannot creating, I do not understand.', 'What I cannot creations, I do not understand.', 'What I cannot create, I do not comprehend.', 'What I cannot create, I do not fathom.', 'What I cannot create, I do not understanding.', 'What I cannot create, I do not understands.', 'What I cannot create, I do not understood.', 'What I cannot create, I do not realise.']
```
You can also create your own augmenter from scratch by importing transformations/constraints from `textattack.transformations` and `textattack.constraints`. Here's an example that generates augmentations of a string using `WordSwapRandomCharacterDeletion`:
```python
>>> from textattack.transformations import WordSwapRandomCharacterDeletion
>>> from textattack.transformations import CompositeTransformation
>>> from textattack.augmentation import Augmenter
>>> transformation = CompositeTransformation([WordSwapRandomCharacterDeletion()])
>>> augmenter = Augmenter(transformation=transformation, transformations_per_example=5)
>>> s = 'What I cannot create, I do not understand.'
>>> augmenter.augment(s)
['What I cannot creae, I do not understand.', 'What I cannot creat, I do not understand.', 'What I cannot create, I do not nderstand.', 'What I cannot create, I do nt understand.', 'Wht I cannot create, I do not understand.']
```
### Training Models: `textattack train`
Our model training code is available via `textattack train` to help you train LSTMs,
CNNs, and `transformers` models using TextAttack out-of-the-box. Datasets are
automatically loaded using the `datasets` package.
#### Training Examples
*Train our default LSTM for 50 epochs on the Yelp Polarity dataset:*
```bash
textattack train --model-name-or-path lstm --dataset yelp_polarity --epochs 50 --learning-rate 1e-5
```
*Fine-Tune `bert-base` on the `CoLA` dataset for 5 epochs**:
```bash
textattack train --model-name-or-path bert-base-uncased --dataset glue^cola --per-device-train-batch-size 8 --epochs 5
```
### To check datasets: `textattack peek-dataset`
To take a closer look at a dataset, use `textattack peek-dataset`. TextAttack will print some cursory statistics about the inputs and outputs from the dataset. For example,
```bash
textattack peek-dataset --dataset-from-huggingface snli
```
will show information about the SNLI dataset from the NLP package.
### To list functional components: `textattack list`
There are lots of pieces in TextAttack, and it can be difficult to keep track of all of them. You can use `textattack list` to list components, for example, pretrained models (`textattack list models`) or available search methods (`textattack list search-methods`).
## Design
### Models
TextAttack is model-agnostic! You can use `TextAttack` to analyze any model that outputs IDs, tensors, or strings. To help users, TextAttack includes pre-trained models for different common NLP tasks. This makes it easier for
users to get started with TextAttack. It also enables a more fair comparison of attacks from
the literature.
#### Built-in Models and Datasets
TextAttack also comes built-in with models and datasets. Our command-line interface will automatically match the correct
dataset to the correct model. We include 82 different (Oct 2020) pre-trained models for each of the nine [GLUE](https://gluebenchmark.com/)
tasks, as well as some common datasets for classification, translation, and summarization.
A list of available pretrained models and their validation accuracies is available at
[textattack/models/README.md](textattack/models/README.md). You can also view a full list of provided models
& datasets via `textattack attack --help`.
Here's an example of using one of the built-in models (the SST-2 dataset is automatically loaded):
```bash
textattack attack --model roberta-base-sst2 --recipe textfooler --num-examples 10
```
#### HuggingFace support: `transformers` models and `datasets` datasets
We also provide built-in support for [`transformers` pretrained models](https://huggingface.co/models)
and datasets from the [`datasets` package](https://github.com/huggingface/datasets)! Here's an example of loading
and attacking a pre-trained model and dataset:
```bash
textattack attack --model-from-huggingface distilbert-base-uncased-finetuned-sst-2-english --dataset-from-huggingface glue^sst2 --recipe deepwordbug --num-examples 10
```
You can explore other pre-trained models using the `--model-from-huggingface` argument, or other datasets by changing
`--dataset-from-huggingface`.
#### Loading a model or dataset from a file
You can easily try out an attack on a local model or dataset sample. To attack a pre-trained model,
create a short file that loads them as variables `model` and `tokenizer`. The `tokenizer` must
be able to transform string inputs to lists or tensors of IDs using a method called `encode()`. The
model must take inputs via the `__call__` method.
##### Custom Model from a file
To experiment with a model you've trained, you could create the following file
and name it `my_model.py`:
```python
model = load_your_model_with_custom_code() # replace this line with your model loading code
tokenizer = load_your_tokenizer_with_custom_code() # replace this line with your tokenizer loading code
```
Then, run an attack with the argument `--model-from-file my_model.py`. The model and tokenizer will be loaded automatically.
### Custom Datasets
#### Dataset from a file
Loading a dataset from a file is very similar to loading a model from a file. A 'dataset' is any iterable of `(input, output)` pairs.
The following example would load a sentiment classification dataset from file `my_dataset.py`:
```python
dataset = [('Today was....', 1), ('This movie is...', 0), ...]
```
You can then run attacks on samples from this dataset by adding the argument `--dataset-from-file my_dataset.py`.
#### Dataset loading via other mechanism, see: [more details at here](https://textattack.readthedocs.io/en/latest/api/datasets.html)
```python
import textattack
my_dataset = [("text",label),....]
new_dataset = textattack.datasets.Dataset(my_dataset)
```
#### Dataset via AttackedText class
To allow for word replacement after a sequence has been tokenized, we include an `AttackedText` object
which maintains both a list of tokens and the original text, with punctuation. We use this object in favor of a list of words or just raw text.
### Attacks and how to design a new attack
We formulate an attack as consisting of four components: a **goal function** which determines if the attack has succeeded, **constraints** defining which perturbations are valid, a **transformation** that generates potential modifications given an input, and a **search method** which traverses through the search space of possible perturbations. The attack attempts to perturb an input text such that the model output fulfills the goal function (i.e., indicating whether the attack is successful) and the perturbation adheres to the set of constraints (e.g., grammar constraint, semantic similarity constraint). A search method is used to find a sequence of transformations that produce a successful adversarial example.
This modular design unifies adversarial attack methods into one system, enables us to easily assemble attacks from the literature while re-using components that are shared across attacks. We provides clean, readable implementations of 16 adversarial attack recipes from the literature (see above table). For the first time, these attacks can be benchmarked, compared, and analyzed in a standardized setting.
TextAttack is model-agnostic - meaning it can run attacks on models implemented in any deep learning framework. Model objects must be able to take a string (or list of strings) and return an output that can be processed by the goal function. For example, machine translation models take a list of strings as input and produce a list of strings as output. Classification and entailment models return an array of scores. As long as the user's model meets this specification, the model is fit to use with TextAttack.
#### Goal Functions
A `GoalFunction` takes as input an `AttackedText` object, scores it, and determines whether the attack has succeeded, returning a `GoalFunctionResult`.
#### Constraints
A `Constraint` takes as input a current `AttackedText`, and a list of transformed `AttackedText`s. For each transformed option, it returns a boolean representing whether the constraint is met.
#### Transformations
A `Transformation` takes as input an `AttackedText` and returns a list of possible transformed `AttackedText`s. For example, a transformation might return all possible synonym replacements.
#### Search Methods
A `SearchMethod` takes as input an initial `GoalFunctionResult` and returns a final `GoalFunctionResult` The search is given access to the `get_transformations` function, which takes as input an `AttackedText` object and outputs a list of possible transformations filtered by meeting all of the attack’s constraints. A search consists of successive calls to `get_transformations` until the search succeeds (determined using `get_goal_results`) or is exhausted.
## On Benchmarking Attacks
- See our analysis paper: Searching for a Search Method: Benchmarking Search Algorithms for Generating NLP Adversarial Examples at [EMNLP BlackBoxNLP](https://arxiv.org/abs/2009.06368).
- As we emphasized in the above paper, we don't recommend to directly compare Attack Recipes out of the box.
- This comment is due to that attack recipes in the recent literature used different ways or thresholds in setting up their constraints. Without the constraint space held constant, an increase in attack success rate could come from an improved search or transformation method or a less restrictive search space.
- Our Github on benchmarking scripts and results: [TextAttack-Search-Benchmark Github](https://github.com/QData/TextAttack-Search-Benchmark)
## On Quality of Generated Adversarial Examples in Natural Language
- Our analysis Paper in [EMNLP Findings](https://arxiv.org/abs/2004.14174)
- We analyze the generated adversarial examples of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences.With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.
- Our Github on Reevaluation results: [Reevaluating-NLP-Adversarial-Examples Github](https://github.com/QData/Reevaluating-NLP-Adversarial-Examples)
- As we have emphasized in this analysis paper, we recommend researchers and users to be EXTREMELY mindful on the quality of generated adversarial examples in natural language
- We recommend the field to use human-evaluation derived thresholds for setting up constraints
## Multi-lingual Support
- see example code: [https://github.com/QData/TextAttack/blob/master/examples/attack/attack_camembert.py](https://github.com/QData/TextAttack/blob/master/examples/attack/attack_camembert.py) for using our framework to attack French-BERT.
- see tutorial notebook: [https://textattack.readthedocs.io/en/latest/2notebook/Example_4_CamemBERT.html](https://textattack.readthedocs.io/en/latest/2notebook/Example_4_CamemBERT.html) for using our framework to attack French-BERT.
- See [README_ZH.md](https://github.com/QData/TextAttack/blob/master/README_ZH.md) for our README in Chinese
## Contributing to TextAttack
We welcome suggestions and contributions! Submit an issue or pull request and we will do our best to respond in a timely manner. TextAttack is currently in an "alpha" stage in which we are working to improve its capabilities and design.
See [CONTRIBUTING.md](https://github.com/QData/TextAttack/blob/master/CONTRIBUTING.md) for detailed information on contributing.
## Citing TextAttack
If you use TextAttack for your research, please cite [TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP](https://arxiv.org/abs/2005.05909).
```bibtex
@inproceedings{morris2020textattack,
title={TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP},
author={Morris, John and Lifland, Eli and Yoo, Jin Yong and Grigsby, Jake and Jin, Di and Qi, Yanjun},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages={119--126},
year={2020}
}
```
%prep
%autosetup -n textattack-0.3.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-textattack -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.8-1
- Package Spec generated
|