summaryrefslogtreecommitdiff
path: root/python-textblob.spec
blob: fe6d742bf16e55e3f6c80cc9c8be80b21c43f77c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
%global _empty_manifest_terminate_build 0
Name:		python-textblob
Version:	0.17.1
Release:	1
Summary:	Simple, Pythonic text processing. Sentiment analysis, part-of-speech tagging, noun phrase parsing, and more.
License:	MIT
URL:		https://github.com/sloria/TextBlob
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/bc/63/8c6f75b7edce0bbaed1d74f03b14c399767fcf08966c227182b62ad63426/textblob-0.17.1.tar.gz
BuildArch:	noarch

Requires:	python3-nltk
Requires:	python3-nltk

%description
Homepage: `https://textblob.readthedocs.io/ <https://textblob.readthedocs.io/>`_
`TextBlob` is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.
    from textblob import TextBlob
    text = '''
    The titular threat of The Blob has always struck me as the ultimate movie
    monster: an insatiably hungry, amoeba-like mass able to penetrate
    virtually any safeguard, capable of--as a doomed doctor chillingly
    describes it--"assimilating flesh on contact.
    Snide comparisons to gelatin be damned, it's a concept with the most
    devastating of potential consequences, not unlike the grey goo scenario
    proposed by technological theorists fearful of
    artificial intelligence run rampant.
    '''
    blob = TextBlob(text)
    blob.tags           # [('The', 'DT'), ('titular', 'JJ'),
                        #  ('threat', 'NN'), ('of', 'IN'), ...]
    blob.noun_phrases   # WordList(['titular threat', 'blob',
                        #            'ultimate movie monster',
                        #            'amoeba-like mass', ...])
    for sentence in blob.sentences:
        print(sentence.sentiment.polarity)
    # 0.060
    # -0.341
TextBlob stands on the giant shoulders of `NLTK`_ and `pattern`_, and plays nicely with both.

%package -n python3-textblob
Summary:	Simple, Pythonic text processing. Sentiment analysis, part-of-speech tagging, noun phrase parsing, and more.
Provides:	python-textblob
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-textblob
Homepage: `https://textblob.readthedocs.io/ <https://textblob.readthedocs.io/>`_
`TextBlob` is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.
    from textblob import TextBlob
    text = '''
    The titular threat of The Blob has always struck me as the ultimate movie
    monster: an insatiably hungry, amoeba-like mass able to penetrate
    virtually any safeguard, capable of--as a doomed doctor chillingly
    describes it--"assimilating flesh on contact.
    Snide comparisons to gelatin be damned, it's a concept with the most
    devastating of potential consequences, not unlike the grey goo scenario
    proposed by technological theorists fearful of
    artificial intelligence run rampant.
    '''
    blob = TextBlob(text)
    blob.tags           # [('The', 'DT'), ('titular', 'JJ'),
                        #  ('threat', 'NN'), ('of', 'IN'), ...]
    blob.noun_phrases   # WordList(['titular threat', 'blob',
                        #            'ultimate movie monster',
                        #            'amoeba-like mass', ...])
    for sentence in blob.sentences:
        print(sentence.sentiment.polarity)
    # 0.060
    # -0.341
TextBlob stands on the giant shoulders of `NLTK`_ and `pattern`_, and plays nicely with both.

%package help
Summary:	Development documents and examples for textblob
Provides:	python3-textblob-doc
%description help
Homepage: `https://textblob.readthedocs.io/ <https://textblob.readthedocs.io/>`_
`TextBlob` is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.
    from textblob import TextBlob
    text = '''
    The titular threat of The Blob has always struck me as the ultimate movie
    monster: an insatiably hungry, amoeba-like mass able to penetrate
    virtually any safeguard, capable of--as a doomed doctor chillingly
    describes it--"assimilating flesh on contact.
    Snide comparisons to gelatin be damned, it's a concept with the most
    devastating of potential consequences, not unlike the grey goo scenario
    proposed by technological theorists fearful of
    artificial intelligence run rampant.
    '''
    blob = TextBlob(text)
    blob.tags           # [('The', 'DT'), ('titular', 'JJ'),
                        #  ('threat', 'NN'), ('of', 'IN'), ...]
    blob.noun_phrases   # WordList(['titular threat', 'blob',
                        #            'ultimate movie monster',
                        #            'amoeba-like mass', ...])
    for sentence in blob.sentences:
        print(sentence.sentiment.polarity)
    # 0.060
    # -0.341
TextBlob stands on the giant shoulders of `NLTK`_ and `pattern`_, and plays nicely with both.

%prep
%autosetup -n textblob-0.17.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-textblob -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.17.1-1
- Package Spec generated