summaryrefslogtreecommitdiff
path: root/python-tflite-model-maker-nightly.spec
blob: 242add42c1b781447eab538486875ba6cfd17631 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
%global _empty_manifest_terminate_build 0
Name:		python-tflite-model-maker-nightly
Version:	0.4.3.dev202304110509
Release:	1
Summary:	TFLite Model Maker: a model customization library for on-device applications.
License:	Apache 2.0
URL:		http://github.com/tensorflow/examples
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/fd/71/1bea458e05411b3e964598b51518df4f503e054c46e2f946d98735225f59/tflite-model-maker-nightly-0.4.3.dev202304110509.tar.gz
BuildArch:	noarch

Requires:	python3-tf-models-official
Requires:	python3-numpy
Requires:	python3-pillow
Requires:	python3-sentencepiece
Requires:	python3-tensorflow-datasets
Requires:	python3-fire
Requires:	python3-flatbuffers
Requires:	python3-absl-py
Requires:	python3-urllib3
Requires:	python3-tflite-support-nightly
Requires:	python3-tensorflow
Requires:	python3-numba
Requires:	python3-librosa
Requires:	python3-lxml
Requires:	python3-PyYAML
Requires:	python3-matplotlib
Requires:	python3-six
Requires:	python3-tfa-nightly
Requires:	python3-neural-structured-learning
Requires:	python3-tensorflow-model-optimization
Requires:	python3-Cython
Requires:	python3-scann
Requires:	python3-tensorflowjs
Requires:	python3-tensorflow-hub
Requires:	python3-tensorflow-hub

%description
# TFLite Model Maker

## Overview

The TFLite Model Maker library simplifies the process of adapting and converting
a TensorFlow neural-network model to particular input data when deploying this
model for on-device ML applications.

## Requirements

*   Refer to
    [requirements.txt](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/requirements.txt)
    for dependent libraries that're needed to use the library and run the demo
    code.
*   Note that you might also need to install `sndfile` for Audio tasks.
On Debian/Ubuntu, you can do so by `sudo apt-get install libsndfile1`

## Installation

There are two ways to install Model Maker.

*   Install a prebuilt pip package:
    [`tflite-model-maker`](https://pypi.org/project/tflite-model-maker/).

```shell
pip install tflite-model-maker
```

If you want to install nightly version
[`tflite-model-maker-nightly`](https://pypi.org/project/tflite-model-maker-nightly/),
please follow the command:

```shell
pip install tflite-model-maker-nightly
```

*   Clone the source code from GitHub and install.

```shell
git clone https://github.com/tensorflow/examples
cd examples/tensorflow_examples/lite/model_maker/pip_package
pip install -e .
```

TensorFlow Lite Model Maker depends on TensorFlow
[pip package](https://www.tensorflow.org/install/pip). For GPU support, please
refer to TensorFlow's [GPU guide](https://www.tensorflow.org/install/gpu) or
[installation guide](https://www.tensorflow.org/install).

## End-to-End Example

For instance, it could have an end-to-end image classification example that
utilizes this library with just 4 lines of code, each of which representing one
step of the overall process. For more detail, you could refer to
[Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb).

*   Step 1. Import the required modules.

```python
from tflite_model_maker import image_classifier
from tflite_model_maker.image_classifier import DataLoader
```

*   Step 2. Load input data specific to an on-device ML app.

```python
data = DataLoader.from_folder('flower_photos/')
```

*   Step 3. Customize the TensorFlow model.

```python
model = image_classifier.create(data)
```

*   Step 4. Evaluate the model.

```python
loss, accuracy = model.evaluate()
```

*   Step 5. Export to Tensorflow Lite model and label file in `export_dir`.

```python
model.export(export_dir='/tmp/')
```

## Notebook

Currently, we support image classification, text classification and question
answer tasks. Meanwhile, we provide demo code for each of them in demo folder.

*   [Overview for TensorFlow Lite Model Maker](https://www.tensorflow.org/lite/guide/model_maker)
*   [Python API Reference](https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker)
*   [Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb)
*   [Colab for text classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_text_classification.ipynb)
*   [Colab for BERT question answer](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb)
*   [Colab for object detection](https://www.tensorflow.org/lite/tutorials/model_maker_object_detection)


%package -n python3-tflite-model-maker-nightly
Summary:	TFLite Model Maker: a model customization library for on-device applications.
Provides:	python-tflite-model-maker-nightly
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tflite-model-maker-nightly
# TFLite Model Maker

## Overview

The TFLite Model Maker library simplifies the process of adapting and converting
a TensorFlow neural-network model to particular input data when deploying this
model for on-device ML applications.

## Requirements

*   Refer to
    [requirements.txt](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/requirements.txt)
    for dependent libraries that're needed to use the library and run the demo
    code.
*   Note that you might also need to install `sndfile` for Audio tasks.
On Debian/Ubuntu, you can do so by `sudo apt-get install libsndfile1`

## Installation

There are two ways to install Model Maker.

*   Install a prebuilt pip package:
    [`tflite-model-maker`](https://pypi.org/project/tflite-model-maker/).

```shell
pip install tflite-model-maker
```

If you want to install nightly version
[`tflite-model-maker-nightly`](https://pypi.org/project/tflite-model-maker-nightly/),
please follow the command:

```shell
pip install tflite-model-maker-nightly
```

*   Clone the source code from GitHub and install.

```shell
git clone https://github.com/tensorflow/examples
cd examples/tensorflow_examples/lite/model_maker/pip_package
pip install -e .
```

TensorFlow Lite Model Maker depends on TensorFlow
[pip package](https://www.tensorflow.org/install/pip). For GPU support, please
refer to TensorFlow's [GPU guide](https://www.tensorflow.org/install/gpu) or
[installation guide](https://www.tensorflow.org/install).

## End-to-End Example

For instance, it could have an end-to-end image classification example that
utilizes this library with just 4 lines of code, each of which representing one
step of the overall process. For more detail, you could refer to
[Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb).

*   Step 1. Import the required modules.

```python
from tflite_model_maker import image_classifier
from tflite_model_maker.image_classifier import DataLoader
```

*   Step 2. Load input data specific to an on-device ML app.

```python
data = DataLoader.from_folder('flower_photos/')
```

*   Step 3. Customize the TensorFlow model.

```python
model = image_classifier.create(data)
```

*   Step 4. Evaluate the model.

```python
loss, accuracy = model.evaluate()
```

*   Step 5. Export to Tensorflow Lite model and label file in `export_dir`.

```python
model.export(export_dir='/tmp/')
```

## Notebook

Currently, we support image classification, text classification and question
answer tasks. Meanwhile, we provide demo code for each of them in demo folder.

*   [Overview for TensorFlow Lite Model Maker](https://www.tensorflow.org/lite/guide/model_maker)
*   [Python API Reference](https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker)
*   [Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb)
*   [Colab for text classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_text_classification.ipynb)
*   [Colab for BERT question answer](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb)
*   [Colab for object detection](https://www.tensorflow.org/lite/tutorials/model_maker_object_detection)


%package help
Summary:	Development documents and examples for tflite-model-maker-nightly
Provides:	python3-tflite-model-maker-nightly-doc
%description help
# TFLite Model Maker

## Overview

The TFLite Model Maker library simplifies the process of adapting and converting
a TensorFlow neural-network model to particular input data when deploying this
model for on-device ML applications.

## Requirements

*   Refer to
    [requirements.txt](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/lite/model_maker/requirements.txt)
    for dependent libraries that're needed to use the library and run the demo
    code.
*   Note that you might also need to install `sndfile` for Audio tasks.
On Debian/Ubuntu, you can do so by `sudo apt-get install libsndfile1`

## Installation

There are two ways to install Model Maker.

*   Install a prebuilt pip package:
    [`tflite-model-maker`](https://pypi.org/project/tflite-model-maker/).

```shell
pip install tflite-model-maker
```

If you want to install nightly version
[`tflite-model-maker-nightly`](https://pypi.org/project/tflite-model-maker-nightly/),
please follow the command:

```shell
pip install tflite-model-maker-nightly
```

*   Clone the source code from GitHub and install.

```shell
git clone https://github.com/tensorflow/examples
cd examples/tensorflow_examples/lite/model_maker/pip_package
pip install -e .
```

TensorFlow Lite Model Maker depends on TensorFlow
[pip package](https://www.tensorflow.org/install/pip). For GPU support, please
refer to TensorFlow's [GPU guide](https://www.tensorflow.org/install/gpu) or
[installation guide](https://www.tensorflow.org/install).

## End-to-End Example

For instance, it could have an end-to-end image classification example that
utilizes this library with just 4 lines of code, each of which representing one
step of the overall process. For more detail, you could refer to
[Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb).

*   Step 1. Import the required modules.

```python
from tflite_model_maker import image_classifier
from tflite_model_maker.image_classifier import DataLoader
```

*   Step 2. Load input data specific to an on-device ML app.

```python
data = DataLoader.from_folder('flower_photos/')
```

*   Step 3. Customize the TensorFlow model.

```python
model = image_classifier.create(data)
```

*   Step 4. Evaluate the model.

```python
loss, accuracy = model.evaluate()
```

*   Step 5. Export to Tensorflow Lite model and label file in `export_dir`.

```python
model.export(export_dir='/tmp/')
```

## Notebook

Currently, we support image classification, text classification and question
answer tasks. Meanwhile, we provide demo code for each of them in demo folder.

*   [Overview for TensorFlow Lite Model Maker](https://www.tensorflow.org/lite/guide/model_maker)
*   [Python API Reference](https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker)
*   [Colab for image classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_image_classification.ipynb)
*   [Colab for text classification](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_text_classification.ipynb)
*   [Colab for BERT question answer](https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/tutorials/model_maker_question_answer.ipynb)
*   [Colab for object detection](https://www.tensorflow.org/lite/tutorials/model_maker_object_detection)


%prep
%autosetup -n tflite-model-maker-nightly-0.4.3.dev202304110509

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tflite-model-maker-nightly -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.3.dev202304110509-1
- Package Spec generated