summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-timemachines.spec314
-rw-r--r--sources1
3 files changed, 316 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..eb0ef93 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/timemachines-0.20.5.tar.gz
diff --git a/python-timemachines.spec b/python-timemachines.spec
new file mode 100644
index 0000000..64d2bf0
--- /dev/null
+++ b/python-timemachines.spec
@@ -0,0 +1,314 @@
+%global _empty_manifest_terminate_build 0
+Name: python-timemachines
+Version: 0.20.5
+Release: 1
+Summary: Evaluation and standardization of autonomous time series prediction
+License: MIT
+URL: https://github.com/microprediction/timemachines
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/dd/1b/ab418796cd69a1f7d185decc83aed7da41cd1b2e5f04185c954342e08f2f/timemachines-0.20.5.tar.gz
+BuildArch: noarch
+
+Requires: python3-wheel
+Requires: python3-numpy
+Requires: python3-importlib-metadata
+Requires: python3-microconventions
+Requires: python3-pytz
+Requires: python3-convertdate
+Requires: python3-momentum
+Requires: python3-requests
+Requires: python3-scipy
+Requires: python3-scikit-learn
+Requires: python3-statsmodels
+Requires: python3-pandas
+Requires: python3-cython
+Requires: python3-river
+Requires: python3-pmdarima
+Requires: python3-sktime
+Requires: python3-statsforecast
+
+%description
+# timemachines ![simple](https://github.com/microprediction/timemachines/workflows/tests/badge.svg)![pycaret](https://github.com/microprediction/timemachines/workflows/test-pycaret/badge.svg)![tsa](https://github.com/microprediction/timemachines/workflows/test-tsa/badge.svg) ![successor](https://github.com/microprediction/timemachines/workflows/test-successor/badge.svg) ![darts](https://github.com/microprediction/timemachines/workflows/test-darts/badge.svg) ![greykite](https://github.com/microprediction/timemachines/workflows/test-greykite/badge.svg) ![sktime](https://github.com/microprediction/timemachines/workflows/test-sktime/badge.svg) ![tbats](https://github.com/microprediction/timemachines/workflows/test-tbats/badge.svg) ![simdkalman](https://github.com/microprediction/timemachines/workflows/test-simdkalman/badge.svg) ![prophet](https://github.com/microprediction/timemachines/workflows/test-prophet/badge.svg) ![statsforecast](https://github.com/microprediction/timemachines/workflows/test-statsforecast/badge.svg)![orbit](https://github.com/microprediction/timemachines/workflows/test-orbit/badge.svg) ![neuralprophet](https://github.com/microprediction/timemachines/workflows/test-neuralprophet/badge.svg) ![pmd](https://github.com/microprediction/timemachines/workflows/test-pmd/badge.svg) ![pydlm](https://github.com/microprediction/timemachines/workflows/test-pydlm/badge.svg) ![merlion](https://github.com/microprediction/timemachines/workflows/test-merlion/badge.svg) ![merlion-prophet](https://github.com/microprediction/timemachines/workflows/test-merlion-prophet/badge.svg) ![river](https://github.com/microprediction/timemachines/workflows/test-river/badge.svg) ![divinity](https://github.com/microprediction/timemachines/workflows/test-divinity/badge.svg)![pycaret](https://github.com/microprediction/timemachines/workflows/test-pycaret-time_series/badge.svg) ![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)
+
+# Simple prediction functions ([documented](https://microprediction.github.io/timemachines/) and [assessed](https://microprediction.github.io/timeseries-elo-ratings/html_leaderboards/overall.html))
+Because [why not](https://microprediction.github.io/timemachines/why) do things in **walk-forward incremental** fashion with **one line of code**? Here yt is a vector or scalar, and we want to predict yt (or its first coordinate if a vector) three steps in advance.
+
+ from timemachines.skaters.somepackage.somevariety import something as f
+ for yt in y:
+ xt, xt_std, s = f(y=yt, s=s, k=3)
+
+This emits a k-vector xt of forecasts, and corresponding k-vector xt_std of estimated standard errors. See [skaters](https://microprediction.github.io/timemachines/skaters) for choices of somepackage, somevariety and something. You can also ensemble, compose, bootstrap and do other things with one line of code.
+
+See the [docs](https://microprediction.github.io/timemachines/).
+
+### Packages used
+
+Skaters draw on functionality from [popular python time-series packages](https://www.microprediction.com/blog/popular-timeseries-packages) like [river](https://github.com/online-ml/river), [pydlm](https://github.com/wwrechard/pydlm), [tbats](https://github.com/intive-DataScience/tbats), [pmdarima](http://alkaline-ml.com/pmdarima/), [statsmodels.tsa](https://www.statsmodels.org/stable/tsa.html), [neuralprophet](https://neuralprophet.com/), Facebook [Prophet](https://facebook.github.io/prophet/),
+ Uber's [orbit](https://eng.uber.com/orbit/), Facebook's [greykite](https://engineering.linkedin.com/blog/2021/greykite--a-flexible--intuitive--and-fast-forecasting-library) and more. See the [docs](https://microprediction.github.io/timemachines/).
+
+## What's a "skater"?
+More abstractly:
+
+$$
+ f : (y_t, state; k) \mapsto ( [\hat{y}(t+1),\hat{y}(t+2),\dots,\hat{y}(t+k) ], [\sigma(t+1),\dots,\sigma(t+k)], posterior\ state))
+$$
+
+where $\sigma(t+l)$ estimates the standard error of the prediction $\hat{y}(t+l)$.
+
+If you prefer an legitimate (i.e. stateful) state machine, see [FAQ](https://github.com/microprediction/timemachines/blob/main/FAQ.md) question 1.
+
+
+### Skater function conventions
+
+See [docs/interface](https://microprediction.github.io/timemachines/interface) for description of skater inputs and outputs. Briefly:
+
+ x, w, s = f( y:Union[float,[float]], # Contemporaneously observerd data,
+ # ... including exogenous variables in y[1:], if any.
+ s=None, # Prior state
+ k:float=1, # Number of steps ahead to forecast. Typically integer.
+ a:[float]=None, # Variable(s) known in advance, or conditioning
+ t:float=None, # Time of observation (epoch seconds)
+ e:float=None, # Non-binding maximal computation time ("e for expiry"), in seconds
+ r:float=None) # Hyper-parameters ("r" stands for for hype(r)-pa(r)amete(r)s)
+
+### Contributions and capstone projects
+
+- See [CONTRIBUTE.md](https://github.com/microprediction/timemachines/blob/main/CONTRIBUTE.md) and [good first issues](https://github.com/microprediction/timemachines/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22).
+- See the suggested steps for a [capstone project](https://microprediction.github.io/timemachines/capstone.html).
+
+### Getting live help
+
+- [FAQ](https://github.com/microprediction/timemachines/blob/main/FAQ.md).
+- See the Slack invite on my user page [here](https://github.com/microprediction/slack).
+- Office hours [here](https://github.com/microprediction/meet).
+- Learn how to deploy some of these models and try to win the [daily $125 prize](https://www.microprediction.com/competitions/daily).
+
+### Install [instructions](https://github.com/microprediction/timemachines/blob/main/INSTALL.md)
+
+Oh what a mess the Python timeseries ecosystem is. So packages are not installed by default. See the methodical [install instructions](https://github.com/microprediction/timemachines/blob/main/INSTALL.md) and be incremental for best results. The infamous [xkcd cartoon](https://xkcd.com/1987/) really does describe the alternative quite well.
+
+
+![](https://i.imgur.com/elu5muO.png)
+
+
+### Cite
+
+Thanks
+
+ @electronic{cottontimemachines,
+ title = {{Timemachines: A Python Package for Creating and Assessing Autonomous Time-Series Prediction Algorithms}},
+ year = {2021},
+ author = {Peter Cotton},
+ url = {https://github.com/microprediction/timemachines}
+ }
+
+or something [here](https://github.com/microprediction/microprediction/blob/master/CITE.md).
+
+
+%package -n python3-timemachines
+Summary: Evaluation and standardization of autonomous time series prediction
+Provides: python-timemachines
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-timemachines
+# timemachines ![simple](https://github.com/microprediction/timemachines/workflows/tests/badge.svg)![pycaret](https://github.com/microprediction/timemachines/workflows/test-pycaret/badge.svg)![tsa](https://github.com/microprediction/timemachines/workflows/test-tsa/badge.svg) ![successor](https://github.com/microprediction/timemachines/workflows/test-successor/badge.svg) ![darts](https://github.com/microprediction/timemachines/workflows/test-darts/badge.svg) ![greykite](https://github.com/microprediction/timemachines/workflows/test-greykite/badge.svg) ![sktime](https://github.com/microprediction/timemachines/workflows/test-sktime/badge.svg) ![tbats](https://github.com/microprediction/timemachines/workflows/test-tbats/badge.svg) ![simdkalman](https://github.com/microprediction/timemachines/workflows/test-simdkalman/badge.svg) ![prophet](https://github.com/microprediction/timemachines/workflows/test-prophet/badge.svg) ![statsforecast](https://github.com/microprediction/timemachines/workflows/test-statsforecast/badge.svg)![orbit](https://github.com/microprediction/timemachines/workflows/test-orbit/badge.svg) ![neuralprophet](https://github.com/microprediction/timemachines/workflows/test-neuralprophet/badge.svg) ![pmd](https://github.com/microprediction/timemachines/workflows/test-pmd/badge.svg) ![pydlm](https://github.com/microprediction/timemachines/workflows/test-pydlm/badge.svg) ![merlion](https://github.com/microprediction/timemachines/workflows/test-merlion/badge.svg) ![merlion-prophet](https://github.com/microprediction/timemachines/workflows/test-merlion-prophet/badge.svg) ![river](https://github.com/microprediction/timemachines/workflows/test-river/badge.svg) ![divinity](https://github.com/microprediction/timemachines/workflows/test-divinity/badge.svg)![pycaret](https://github.com/microprediction/timemachines/workflows/test-pycaret-time_series/badge.svg) ![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)
+
+# Simple prediction functions ([documented](https://microprediction.github.io/timemachines/) and [assessed](https://microprediction.github.io/timeseries-elo-ratings/html_leaderboards/overall.html))
+Because [why not](https://microprediction.github.io/timemachines/why) do things in **walk-forward incremental** fashion with **one line of code**? Here yt is a vector or scalar, and we want to predict yt (or its first coordinate if a vector) three steps in advance.
+
+ from timemachines.skaters.somepackage.somevariety import something as f
+ for yt in y:
+ xt, xt_std, s = f(y=yt, s=s, k=3)
+
+This emits a k-vector xt of forecasts, and corresponding k-vector xt_std of estimated standard errors. See [skaters](https://microprediction.github.io/timemachines/skaters) for choices of somepackage, somevariety and something. You can also ensemble, compose, bootstrap and do other things with one line of code.
+
+See the [docs](https://microprediction.github.io/timemachines/).
+
+### Packages used
+
+Skaters draw on functionality from [popular python time-series packages](https://www.microprediction.com/blog/popular-timeseries-packages) like [river](https://github.com/online-ml/river), [pydlm](https://github.com/wwrechard/pydlm), [tbats](https://github.com/intive-DataScience/tbats), [pmdarima](http://alkaline-ml.com/pmdarima/), [statsmodels.tsa](https://www.statsmodels.org/stable/tsa.html), [neuralprophet](https://neuralprophet.com/), Facebook [Prophet](https://facebook.github.io/prophet/),
+ Uber's [orbit](https://eng.uber.com/orbit/), Facebook's [greykite](https://engineering.linkedin.com/blog/2021/greykite--a-flexible--intuitive--and-fast-forecasting-library) and more. See the [docs](https://microprediction.github.io/timemachines/).
+
+## What's a "skater"?
+More abstractly:
+
+$$
+ f : (y_t, state; k) \mapsto ( [\hat{y}(t+1),\hat{y}(t+2),\dots,\hat{y}(t+k) ], [\sigma(t+1),\dots,\sigma(t+k)], posterior\ state))
+$$
+
+where $\sigma(t+l)$ estimates the standard error of the prediction $\hat{y}(t+l)$.
+
+If you prefer an legitimate (i.e. stateful) state machine, see [FAQ](https://github.com/microprediction/timemachines/blob/main/FAQ.md) question 1.
+
+
+### Skater function conventions
+
+See [docs/interface](https://microprediction.github.io/timemachines/interface) for description of skater inputs and outputs. Briefly:
+
+ x, w, s = f( y:Union[float,[float]], # Contemporaneously observerd data,
+ # ... including exogenous variables in y[1:], if any.
+ s=None, # Prior state
+ k:float=1, # Number of steps ahead to forecast. Typically integer.
+ a:[float]=None, # Variable(s) known in advance, or conditioning
+ t:float=None, # Time of observation (epoch seconds)
+ e:float=None, # Non-binding maximal computation time ("e for expiry"), in seconds
+ r:float=None) # Hyper-parameters ("r" stands for for hype(r)-pa(r)amete(r)s)
+
+### Contributions and capstone projects
+
+- See [CONTRIBUTE.md](https://github.com/microprediction/timemachines/blob/main/CONTRIBUTE.md) and [good first issues](https://github.com/microprediction/timemachines/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22).
+- See the suggested steps for a [capstone project](https://microprediction.github.io/timemachines/capstone.html).
+
+### Getting live help
+
+- [FAQ](https://github.com/microprediction/timemachines/blob/main/FAQ.md).
+- See the Slack invite on my user page [here](https://github.com/microprediction/slack).
+- Office hours [here](https://github.com/microprediction/meet).
+- Learn how to deploy some of these models and try to win the [daily $125 prize](https://www.microprediction.com/competitions/daily).
+
+### Install [instructions](https://github.com/microprediction/timemachines/blob/main/INSTALL.md)
+
+Oh what a mess the Python timeseries ecosystem is. So packages are not installed by default. See the methodical [install instructions](https://github.com/microprediction/timemachines/blob/main/INSTALL.md) and be incremental for best results. The infamous [xkcd cartoon](https://xkcd.com/1987/) really does describe the alternative quite well.
+
+
+![](https://i.imgur.com/elu5muO.png)
+
+
+### Cite
+
+Thanks
+
+ @electronic{cottontimemachines,
+ title = {{Timemachines: A Python Package for Creating and Assessing Autonomous Time-Series Prediction Algorithms}},
+ year = {2021},
+ author = {Peter Cotton},
+ url = {https://github.com/microprediction/timemachines}
+ }
+
+or something [here](https://github.com/microprediction/microprediction/blob/master/CITE.md).
+
+
+%package help
+Summary: Development documents and examples for timemachines
+Provides: python3-timemachines-doc
+%description help
+# timemachines ![simple](https://github.com/microprediction/timemachines/workflows/tests/badge.svg)![pycaret](https://github.com/microprediction/timemachines/workflows/test-pycaret/badge.svg)![tsa](https://github.com/microprediction/timemachines/workflows/test-tsa/badge.svg) ![successor](https://github.com/microprediction/timemachines/workflows/test-successor/badge.svg) ![darts](https://github.com/microprediction/timemachines/workflows/test-darts/badge.svg) ![greykite](https://github.com/microprediction/timemachines/workflows/test-greykite/badge.svg) ![sktime](https://github.com/microprediction/timemachines/workflows/test-sktime/badge.svg) ![tbats](https://github.com/microprediction/timemachines/workflows/test-tbats/badge.svg) ![simdkalman](https://github.com/microprediction/timemachines/workflows/test-simdkalman/badge.svg) ![prophet](https://github.com/microprediction/timemachines/workflows/test-prophet/badge.svg) ![statsforecast](https://github.com/microprediction/timemachines/workflows/test-statsforecast/badge.svg)![orbit](https://github.com/microprediction/timemachines/workflows/test-orbit/badge.svg) ![neuralprophet](https://github.com/microprediction/timemachines/workflows/test-neuralprophet/badge.svg) ![pmd](https://github.com/microprediction/timemachines/workflows/test-pmd/badge.svg) ![pydlm](https://github.com/microprediction/timemachines/workflows/test-pydlm/badge.svg) ![merlion](https://github.com/microprediction/timemachines/workflows/test-merlion/badge.svg) ![merlion-prophet](https://github.com/microprediction/timemachines/workflows/test-merlion-prophet/badge.svg) ![river](https://github.com/microprediction/timemachines/workflows/test-river/badge.svg) ![divinity](https://github.com/microprediction/timemachines/workflows/test-divinity/badge.svg)![pycaret](https://github.com/microprediction/timemachines/workflows/test-pycaret-time_series/badge.svg) ![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)
+
+# Simple prediction functions ([documented](https://microprediction.github.io/timemachines/) and [assessed](https://microprediction.github.io/timeseries-elo-ratings/html_leaderboards/overall.html))
+Because [why not](https://microprediction.github.io/timemachines/why) do things in **walk-forward incremental** fashion with **one line of code**? Here yt is a vector or scalar, and we want to predict yt (or its first coordinate if a vector) three steps in advance.
+
+ from timemachines.skaters.somepackage.somevariety import something as f
+ for yt in y:
+ xt, xt_std, s = f(y=yt, s=s, k=3)
+
+This emits a k-vector xt of forecasts, and corresponding k-vector xt_std of estimated standard errors. See [skaters](https://microprediction.github.io/timemachines/skaters) for choices of somepackage, somevariety and something. You can also ensemble, compose, bootstrap and do other things with one line of code.
+
+See the [docs](https://microprediction.github.io/timemachines/).
+
+### Packages used
+
+Skaters draw on functionality from [popular python time-series packages](https://www.microprediction.com/blog/popular-timeseries-packages) like [river](https://github.com/online-ml/river), [pydlm](https://github.com/wwrechard/pydlm), [tbats](https://github.com/intive-DataScience/tbats), [pmdarima](http://alkaline-ml.com/pmdarima/), [statsmodels.tsa](https://www.statsmodels.org/stable/tsa.html), [neuralprophet](https://neuralprophet.com/), Facebook [Prophet](https://facebook.github.io/prophet/),
+ Uber's [orbit](https://eng.uber.com/orbit/), Facebook's [greykite](https://engineering.linkedin.com/blog/2021/greykite--a-flexible--intuitive--and-fast-forecasting-library) and more. See the [docs](https://microprediction.github.io/timemachines/).
+
+## What's a "skater"?
+More abstractly:
+
+$$
+ f : (y_t, state; k) \mapsto ( [\hat{y}(t+1),\hat{y}(t+2),\dots,\hat{y}(t+k) ], [\sigma(t+1),\dots,\sigma(t+k)], posterior\ state))
+$$
+
+where $\sigma(t+l)$ estimates the standard error of the prediction $\hat{y}(t+l)$.
+
+If you prefer an legitimate (i.e. stateful) state machine, see [FAQ](https://github.com/microprediction/timemachines/blob/main/FAQ.md) question 1.
+
+
+### Skater function conventions
+
+See [docs/interface](https://microprediction.github.io/timemachines/interface) for description of skater inputs and outputs. Briefly:
+
+ x, w, s = f( y:Union[float,[float]], # Contemporaneously observerd data,
+ # ... including exogenous variables in y[1:], if any.
+ s=None, # Prior state
+ k:float=1, # Number of steps ahead to forecast. Typically integer.
+ a:[float]=None, # Variable(s) known in advance, or conditioning
+ t:float=None, # Time of observation (epoch seconds)
+ e:float=None, # Non-binding maximal computation time ("e for expiry"), in seconds
+ r:float=None) # Hyper-parameters ("r" stands for for hype(r)-pa(r)amete(r)s)
+
+### Contributions and capstone projects
+
+- See [CONTRIBUTE.md](https://github.com/microprediction/timemachines/blob/main/CONTRIBUTE.md) and [good first issues](https://github.com/microprediction/timemachines/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22).
+- See the suggested steps for a [capstone project](https://microprediction.github.io/timemachines/capstone.html).
+
+### Getting live help
+
+- [FAQ](https://github.com/microprediction/timemachines/blob/main/FAQ.md).
+- See the Slack invite on my user page [here](https://github.com/microprediction/slack).
+- Office hours [here](https://github.com/microprediction/meet).
+- Learn how to deploy some of these models and try to win the [daily $125 prize](https://www.microprediction.com/competitions/daily).
+
+### Install [instructions](https://github.com/microprediction/timemachines/blob/main/INSTALL.md)
+
+Oh what a mess the Python timeseries ecosystem is. So packages are not installed by default. See the methodical [install instructions](https://github.com/microprediction/timemachines/blob/main/INSTALL.md) and be incremental for best results. The infamous [xkcd cartoon](https://xkcd.com/1987/) really does describe the alternative quite well.
+
+
+![](https://i.imgur.com/elu5muO.png)
+
+
+### Cite
+
+Thanks
+
+ @electronic{cottontimemachines,
+ title = {{Timemachines: A Python Package for Creating and Assessing Autonomous Time-Series Prediction Algorithms}},
+ year = {2021},
+ author = {Peter Cotton},
+ url = {https://github.com/microprediction/timemachines}
+ }
+
+or something [here](https://github.com/microprediction/microprediction/blob/master/CITE.md).
+
+
+%prep
+%autosetup -n timemachines-0.20.5
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-timemachines -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.20.5-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..5987fab
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+3381c8d99e5e39932835d0e163423891 timemachines-0.20.5.tar.gz