summaryrefslogtreecommitdiff
path: root/python-timm.spec
blob: d9e0ef9c31735c3e7b363c89cc99225e001fddf5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
%global _empty_manifest_terminate_build 0
Name:		python-timm
Version:	0.6.13
Release:	1
Summary:	(Unofficial) PyTorch Image Models
License:	Apache Software License
URL:		https://github.com/rwightman/pytorch-image-models
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/de/29/4f9b0732a7eb5bd39e5873e52d648d6240b64997dbbaf09cf0996be1bf9c/timm-0.6.13.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-torchvision
Requires:	python3-pyyaml
Requires:	python3-huggingface-hub

%description
# PyTorch Image Models
- [Sponsors](#sponsors)
- [What's New](#whats-new)
- [Introduction](#introduction)
- [Models](#models)
- [Features](#features)
- [Results](#results)
- [Getting Started (Documentation)](#getting-started-documentation)
- [Train, Validation, Inference Scripts](#train-validation-inference-scripts)
- [Awesome PyTorch Resources](#awesome-pytorch-resources)
- [Licenses](#licenses)
- [Citing](#citing)

## Sponsors

Thanks to the following for hardware support:
* TPU Research Cloud (TRC) (https://sites.research.google/trc/about/)
* Nvidia (https://www.nvidia.com/en-us/)

And a big thanks to all GitHub sponsors who helped with some of my costs before I joined Hugging Face.

## What's New

### March 23, 2022
* 0.6.13 release to include Python 3.11 fix. Please try 0.8.x pre-releases (main branch or `pip install --pre timm`) for latest (transitioning to a 0.9 release soon).

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.
  
### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G) 
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)


### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights 
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are finally up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! 
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. 
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. 
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture

### Nov 22, 2021
* A number of updated weights anew new model defs
  * `eca_halonext26ts` - 79.5 @ 256
  * `resnet50_gn` (new) - 80.1 @ 224, 81.3 @ 288
  * `resnet50` - 80.7 @ 224, 80.9 @ 288 (trained at 176, not replacing current a1 weights as default since these don't scale as well to higher res, [weights](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth))
  * `resnext50_32x4d` - 81.1 @ 224, 82.0 @ 288
  * `sebotnet33ts_256` (new) - 81.2 @ 224
  * `lamhalobotnet50ts_256` - 81.5 @ 256
  * `halonet50ts` - 81.7 @ 256
  * `halo2botnet50ts_256` - 82.0 @ 256
  * `resnet101` - 82.0 @ 224, 82.8 @ 288
  * `resnetv2_101` (new) - 82.1 @ 224, 83.0 @ 288
  * `resnet152` - 82.8 @ 224, 83.5 @ 288
  * `regnetz_d8` (new) - 83.5 @ 256, 84.0 @ 320
  * `regnetz_e8` (new) - 84.5 @ 256, 85.0 @ 320
* `vit_base_patch8_224` (85.8 top-1) & `in21k` variant weights added thanks [Martins Bruveris](https://github.com/martinsbruveris)
* Groundwork in for FX feature extraction thanks to [Alexander Soare](https://github.com/alexander-soare)
  * models updated for tracing compatibility (almost full support with some distlled transformer exceptions)

### Oct 19, 2021
* ResNet strikes back (https://arxiv.org/abs/2110.00476) weights added, plus any extra training components used. Model weights and some more details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights)
* BCE loss and Repeated Augmentation support for RSB paper
* 4 series of ResNet based attention model experiments being added (implemented across byobnet.py/byoanet.py). These include all sorts of attention, from channel attn like SE, ECA to 2D QKV self-attention layers such as Halo, Bottlneck, Lambda. Details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* Working implementations of the following 2D self-attention modules (likely to be differences from paper or eventual official impl):
  * Halo (https://arxiv.org/abs/2103.12731)
  * Bottleneck Transformer (https://arxiv.org/abs/2101.11605)
  * LambdaNetworks (https://arxiv.org/abs/2102.08602)
* A RegNetZ series of models with some attention experiments (being added to). These do not follow the paper (https://arxiv.org/abs/2103.06877) in any way other than block architecture, details of official models are not available. See more here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* ConvMixer (https://openreview.net/forum?id=TVHS5Y4dNvM), CrossVit (https://arxiv.org/abs/2103.14899), and BeiT (https://arxiv.org/abs/2106.08254) architectures + weights added
* freeze/unfreeze helpers by [Alexander Soare](https://github.com/alexander-soare)

### Aug 18, 2021
* Optimizer bonanza!
  * Add LAMB and LARS optimizers, incl trust ratio clipping options. Tweaked to work properly in PyTorch XLA (tested on TPUs w/ `timm bits` [branch](https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu/timm/bits))
  * Add MADGRAD from FB research w/ a few tweaks (decoupled decay option, step handling that works with PyTorch XLA)
  * Some cleanup on all optimizers and factory. No more `.data`, a bit more consistency, unit tests for all!
  * SGDP and AdamP still won't work with PyTorch XLA but others should (have yet to test Adabelief, Adafactor, Adahessian myself).
* EfficientNet-V2 XL TF ported weights added, but they don't validate well in PyTorch (L is better). The pre-processing for the V2 TF training is a bit diff and the fine-tuned 21k -> 1k weights are very sensitive and less robust than the 1k weights.
* Added PyTorch trained EfficientNet-V2 'Tiny' w/ GlobalContext attn weights. Only .1-.2 top-1 better than the SE so more of a curiosity for those interested.

## Introduction

Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything.

## Models

All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated. Here are some example [training hparams](https://rwightman.github.io/pytorch-image-models/training_hparam_examples) to get you started.

A full version of the list below with source links can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/models/).

* Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
* BEiT - https://arxiv.org/abs/2106.08254
* Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
* Bottleneck Transformers - https://arxiv.org/abs/2101.11605
* CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
* CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
* CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
* ConvNeXt - https://arxiv.org/abs/2201.03545
* ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
* DeiT - https://arxiv.org/abs/2012.12877
* DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
* DenseNet - https://arxiv.org/abs/1608.06993
* DLA - https://arxiv.org/abs/1707.06484
* DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
* EdgeNeXt - https://arxiv.org/abs/2206.10589
* EfficientFormer - https://arxiv.org/abs/2206.01191
* EfficientNet (MBConvNet Family)
    * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
    * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
    * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
    * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
    * EfficientNet V2 - https://arxiv.org/abs/2104.00298
    * FBNet-C - https://arxiv.org/abs/1812.03443
    * MixNet - https://arxiv.org/abs/1907.09595
    * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
    * MobileNet-V2 - https://arxiv.org/abs/1801.04381
    * Single-Path NAS - https://arxiv.org/abs/1904.02877
    * TinyNet - https://arxiv.org/abs/2010.14819
* GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
* GhostNet - https://arxiv.org/abs/1911.11907
* gMLP - https://arxiv.org/abs/2105.08050
* GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
* Halo Nets - https://arxiv.org/abs/2103.12731
* HRNet - https://arxiv.org/abs/1908.07919
* Inception-V3 - https://arxiv.org/abs/1512.00567
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* Lambda Networks - https://arxiv.org/abs/2102.08602
* LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
* MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
* MLP-Mixer - https://arxiv.org/abs/2105.01601
* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
  * FBNet-V3 - https://arxiv.org/abs/2006.02049
  * HardCoRe-NAS - https://arxiv.org/abs/2102.11646
  * LCNet - https://arxiv.org/abs/2109.15099
* MobileViT - https://arxiv.org/abs/2110.02178
* MobileViT-V2 - https://arxiv.org/abs/2206.02680
* MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
* NASNet-A - https://arxiv.org/abs/1707.07012
* NesT - https://arxiv.org/abs/2105.12723
* NFNet-F - https://arxiv.org/abs/2102.06171
* NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
* PNasNet - https://arxiv.org/abs/1712.00559
* PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
* Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
* PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
* RegNet - https://arxiv.org/abs/2003.13678
* RegNetZ - https://arxiv.org/abs/2103.06877
* RepVGG - https://arxiv.org/abs/2101.03697
* ResMLP - https://arxiv.org/abs/2105.03404
* ResNet/ResNeXt
    * ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
    * ResNeXt - https://arxiv.org/abs/1611.05431
    * 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
    * Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
    * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
    * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
    * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
    * ResNet-RS - https://arxiv.org/abs/2103.07579
* Res2Net - https://arxiv.org/abs/1904.01169
* ResNeSt - https://arxiv.org/abs/2004.08955
* ReXNet - https://arxiv.org/abs/2007.00992
* SelecSLS - https://arxiv.org/abs/1907.00837
* Selective Kernel Networks - https://arxiv.org/abs/1903.06586
* Sequencer2D - https://arxiv.org/abs/2205.01972
* Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
* Swin Transformer - https://arxiv.org/abs/2103.14030
* Swin Transformer V2 - https://arxiv.org/abs/2111.09883
* Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
* TResNet - https://arxiv.org/abs/2003.13630
* Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf
* Visformer - https://arxiv.org/abs/2104.12533
* Vision Transformer - https://arxiv.org/abs/2010.11929
* VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
* VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
* Xception - https://arxiv.org/abs/1610.02357
* Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
* Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
* XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681

## Features

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

* All models have a common default configuration interface and API for
    * accessing/changing the classifier - `get_classifier` and `reset_classifier`
    * doing a forward pass on just the features - `forward_features` (see [documentation](https://rwightman.github.io/pytorch-image-models/feature_extraction/))
    * these makes it easy to write consistent network wrappers that work with any of the models
* All models support multi-scale feature map extraction (feature pyramids) via create_model (see [documentation](https://rwightman.github.io/pytorch-image-models/feature_extraction/))
    * `create_model(name, features_only=True, out_indices=..., output_stride=...)`
    * `out_indices` creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the `C(i + 1)` feature level.
    * `output_stride` creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this.
    * feature map channel counts, reduction level (stride) can be queried AFTER model creation via the `.feature_info` member
* All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
* High performance [reference training, validation, and inference scripts](https://rwightman.github.io/pytorch-image-models/scripts/) that work in several process/GPU modes:
    * NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
    * PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
    * PyTorch w/ single GPU single process (AMP optional)
* A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
* A 'Test Time Pool' wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
* Learning rate schedulers
  * Ideas adopted from
     * [AllenNLP schedulers](https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers)
     * [FAIRseq lr_scheduler](https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler)
     * SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983)
  * Schedulers include `step`, `cosine` w/ restarts, `tanh` w/ restarts, `plateau`
* Optimizers:
    * `rmsprop_tf` adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour.
    * `radam` by [Liyuan Liu](https://github.com/LiyuanLucasLiu/RAdam) (https://arxiv.org/abs/1908.03265)
    * `novograd` by [Masashi Kimura](https://github.com/convergence-lab/novograd) (https://arxiv.org/abs/1905.11286)
    * `lookahead` adapted from impl by [Liam](https://github.com/alphadl/lookahead.pytorch) (https://arxiv.org/abs/1907.08610)
    * `fused<name>` optimizers by name with [NVIDIA Apex](https://github.com/NVIDIA/apex/tree/master/apex/optimizers) installed
    * `adamp` and `sgdp` by [Naver ClovAI](https://github.com/clovaai) (https://arxiv.org/abs/2006.08217)
    * `adafactor` adapted from [FAIRSeq impl](https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py) (https://arxiv.org/abs/1804.04235)
    * `adahessian` by [David Samuel](https://github.com/davda54/ada-hessian) (https://arxiv.org/abs/2006.00719)
* Random Erasing from [Zhun Zhong](https://github.com/zhunzhong07/Random-Erasing/blob/master/transforms.py)  (https://arxiv.org/abs/1708.04896)
* Mixup (https://arxiv.org/abs/1710.09412)
* CutMix (https://arxiv.org/abs/1905.04899)
* AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py)
* AugMix w/ JSD loss (https://arxiv.org/abs/1912.02781), JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well
* SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data
* DropPath aka "Stochastic Depth" (https://arxiv.org/abs/1603.09382) 
* DropBlock (https://arxiv.org/abs/1810.12890)
* Blur Pooling (https://arxiv.org/abs/1904.11486)
* Space-to-Depth by [mrT23](https://github.com/mrT23/TResNet/blob/master/src/models/tresnet/layers/space_to_depth.py) (https://arxiv.org/abs/1801.04590) -- original paper?
* Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets)
* An extensive selection of channel and/or spatial attention modules:
    * Bottleneck Transformer - https://arxiv.org/abs/2101.11605
    * CBAM - https://arxiv.org/abs/1807.06521
    * Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667
    * Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151
    * Gather-Excite (GE) - https://arxiv.org/abs/1810.12348
    * Global Context (GC) - https://arxiv.org/abs/1904.11492
    * Halo - https://arxiv.org/abs/2103.12731
    * Involution - https://arxiv.org/abs/2103.06255
    * Lambda Layer - https://arxiv.org/abs/2102.08602
    * Non-Local (NL) -  https://arxiv.org/abs/1711.07971
    * Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507
    * Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586
    * Split (SPLAT) - https://arxiv.org/abs/2004.08955
    * Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030

## Results

Model validation results can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/results/) and in the [results tables](results/README.md)

## Getting Started (Documentation)

My current [documentation](https://rwightman.github.io/pytorch-image-models/) for `timm` covers the basics.

Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) will be the documentation focus going forward and will eventually replace the `github.io` docs above.

[Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail.

[timmdocs](http://timm.fast.ai/) is quickly becoming a much more comprehensive set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs.

[paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`.

## Train, Validation, Inference Scripts

The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See [documentation](https://rwightman.github.io/pytorch-image-models/scripts/) for some basics and [training hparams](https://rwightman.github.io/pytorch-image-models/training_hparam_examples) for some train examples that produce SOTA ImageNet results.

## Awesome PyTorch Resources

One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below.

### Object Detection, Instance and Semantic Segmentation
* Detectron2 - https://github.com/facebookresearch/detectron2
* Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch
* EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch

### Computer Vision / Image Augmentation
* Albumentations - https://github.com/albumentations-team/albumentations
* Kornia - https://github.com/kornia/kornia

### Knowledge Distillation
* RepDistiller - https://github.com/HobbitLong/RepDistiller
* torchdistill - https://github.com/yoshitomo-matsubara/torchdistill

### Metric Learning
* PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning

### Training / Frameworks
* fastai - https://github.com/fastai/fastai

## Licenses

### Code
The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue.

### Pretrained Weights
So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product.

#### Pretrained on more than ImageNet
Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.

## Citing

### BibTeX

```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```

### Latest DOI

[![DOI](https://zenodo.org/badge/168799526.svg)](https://zenodo.org/badge/latestdoi/168799526)


%package -n python3-timm
Summary:	(Unofficial) PyTorch Image Models
Provides:	python-timm
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-timm
# PyTorch Image Models
- [Sponsors](#sponsors)
- [What's New](#whats-new)
- [Introduction](#introduction)
- [Models](#models)
- [Features](#features)
- [Results](#results)
- [Getting Started (Documentation)](#getting-started-documentation)
- [Train, Validation, Inference Scripts](#train-validation-inference-scripts)
- [Awesome PyTorch Resources](#awesome-pytorch-resources)
- [Licenses](#licenses)
- [Citing](#citing)

## Sponsors

Thanks to the following for hardware support:
* TPU Research Cloud (TRC) (https://sites.research.google/trc/about/)
* Nvidia (https://www.nvidia.com/en-us/)

And a big thanks to all GitHub sponsors who helped with some of my costs before I joined Hugging Face.

## What's New

### March 23, 2022
* 0.6.13 release to include Python 3.11 fix. Please try 0.8.x pre-releases (main branch or `pip install --pre timm`) for latest (transitioning to a 0.9 release soon).

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.
  
### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G) 
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)


### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights 
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are finally up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! 
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. 
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. 
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture

### Nov 22, 2021
* A number of updated weights anew new model defs
  * `eca_halonext26ts` - 79.5 @ 256
  * `resnet50_gn` (new) - 80.1 @ 224, 81.3 @ 288
  * `resnet50` - 80.7 @ 224, 80.9 @ 288 (trained at 176, not replacing current a1 weights as default since these don't scale as well to higher res, [weights](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth))
  * `resnext50_32x4d` - 81.1 @ 224, 82.0 @ 288
  * `sebotnet33ts_256` (new) - 81.2 @ 224
  * `lamhalobotnet50ts_256` - 81.5 @ 256
  * `halonet50ts` - 81.7 @ 256
  * `halo2botnet50ts_256` - 82.0 @ 256
  * `resnet101` - 82.0 @ 224, 82.8 @ 288
  * `resnetv2_101` (new) - 82.1 @ 224, 83.0 @ 288
  * `resnet152` - 82.8 @ 224, 83.5 @ 288
  * `regnetz_d8` (new) - 83.5 @ 256, 84.0 @ 320
  * `regnetz_e8` (new) - 84.5 @ 256, 85.0 @ 320
* `vit_base_patch8_224` (85.8 top-1) & `in21k` variant weights added thanks [Martins Bruveris](https://github.com/martinsbruveris)
* Groundwork in for FX feature extraction thanks to [Alexander Soare](https://github.com/alexander-soare)
  * models updated for tracing compatibility (almost full support with some distlled transformer exceptions)

### Oct 19, 2021
* ResNet strikes back (https://arxiv.org/abs/2110.00476) weights added, plus any extra training components used. Model weights and some more details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights)
* BCE loss and Repeated Augmentation support for RSB paper
* 4 series of ResNet based attention model experiments being added (implemented across byobnet.py/byoanet.py). These include all sorts of attention, from channel attn like SE, ECA to 2D QKV self-attention layers such as Halo, Bottlneck, Lambda. Details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* Working implementations of the following 2D self-attention modules (likely to be differences from paper or eventual official impl):
  * Halo (https://arxiv.org/abs/2103.12731)
  * Bottleneck Transformer (https://arxiv.org/abs/2101.11605)
  * LambdaNetworks (https://arxiv.org/abs/2102.08602)
* A RegNetZ series of models with some attention experiments (being added to). These do not follow the paper (https://arxiv.org/abs/2103.06877) in any way other than block architecture, details of official models are not available. See more here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* ConvMixer (https://openreview.net/forum?id=TVHS5Y4dNvM), CrossVit (https://arxiv.org/abs/2103.14899), and BeiT (https://arxiv.org/abs/2106.08254) architectures + weights added
* freeze/unfreeze helpers by [Alexander Soare](https://github.com/alexander-soare)

### Aug 18, 2021
* Optimizer bonanza!
  * Add LAMB and LARS optimizers, incl trust ratio clipping options. Tweaked to work properly in PyTorch XLA (tested on TPUs w/ `timm bits` [branch](https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu/timm/bits))
  * Add MADGRAD from FB research w/ a few tweaks (decoupled decay option, step handling that works with PyTorch XLA)
  * Some cleanup on all optimizers and factory. No more `.data`, a bit more consistency, unit tests for all!
  * SGDP and AdamP still won't work with PyTorch XLA but others should (have yet to test Adabelief, Adafactor, Adahessian myself).
* EfficientNet-V2 XL TF ported weights added, but they don't validate well in PyTorch (L is better). The pre-processing for the V2 TF training is a bit diff and the fine-tuned 21k -> 1k weights are very sensitive and less robust than the 1k weights.
* Added PyTorch trained EfficientNet-V2 'Tiny' w/ GlobalContext attn weights. Only .1-.2 top-1 better than the SE so more of a curiosity for those interested.

## Introduction

Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything.

## Models

All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated. Here are some example [training hparams](https://rwightman.github.io/pytorch-image-models/training_hparam_examples) to get you started.

A full version of the list below with source links can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/models/).

* Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
* BEiT - https://arxiv.org/abs/2106.08254
* Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
* Bottleneck Transformers - https://arxiv.org/abs/2101.11605
* CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
* CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
* CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
* ConvNeXt - https://arxiv.org/abs/2201.03545
* ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
* DeiT - https://arxiv.org/abs/2012.12877
* DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
* DenseNet - https://arxiv.org/abs/1608.06993
* DLA - https://arxiv.org/abs/1707.06484
* DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
* EdgeNeXt - https://arxiv.org/abs/2206.10589
* EfficientFormer - https://arxiv.org/abs/2206.01191
* EfficientNet (MBConvNet Family)
    * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
    * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
    * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
    * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
    * EfficientNet V2 - https://arxiv.org/abs/2104.00298
    * FBNet-C - https://arxiv.org/abs/1812.03443
    * MixNet - https://arxiv.org/abs/1907.09595
    * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
    * MobileNet-V2 - https://arxiv.org/abs/1801.04381
    * Single-Path NAS - https://arxiv.org/abs/1904.02877
    * TinyNet - https://arxiv.org/abs/2010.14819
* GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
* GhostNet - https://arxiv.org/abs/1911.11907
* gMLP - https://arxiv.org/abs/2105.08050
* GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
* Halo Nets - https://arxiv.org/abs/2103.12731
* HRNet - https://arxiv.org/abs/1908.07919
* Inception-V3 - https://arxiv.org/abs/1512.00567
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* Lambda Networks - https://arxiv.org/abs/2102.08602
* LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
* MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
* MLP-Mixer - https://arxiv.org/abs/2105.01601
* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
  * FBNet-V3 - https://arxiv.org/abs/2006.02049
  * HardCoRe-NAS - https://arxiv.org/abs/2102.11646
  * LCNet - https://arxiv.org/abs/2109.15099
* MobileViT - https://arxiv.org/abs/2110.02178
* MobileViT-V2 - https://arxiv.org/abs/2206.02680
* MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
* NASNet-A - https://arxiv.org/abs/1707.07012
* NesT - https://arxiv.org/abs/2105.12723
* NFNet-F - https://arxiv.org/abs/2102.06171
* NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
* PNasNet - https://arxiv.org/abs/1712.00559
* PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
* Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
* PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
* RegNet - https://arxiv.org/abs/2003.13678
* RegNetZ - https://arxiv.org/abs/2103.06877
* RepVGG - https://arxiv.org/abs/2101.03697
* ResMLP - https://arxiv.org/abs/2105.03404
* ResNet/ResNeXt
    * ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
    * ResNeXt - https://arxiv.org/abs/1611.05431
    * 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
    * Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
    * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
    * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
    * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
    * ResNet-RS - https://arxiv.org/abs/2103.07579
* Res2Net - https://arxiv.org/abs/1904.01169
* ResNeSt - https://arxiv.org/abs/2004.08955
* ReXNet - https://arxiv.org/abs/2007.00992
* SelecSLS - https://arxiv.org/abs/1907.00837
* Selective Kernel Networks - https://arxiv.org/abs/1903.06586
* Sequencer2D - https://arxiv.org/abs/2205.01972
* Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
* Swin Transformer - https://arxiv.org/abs/2103.14030
* Swin Transformer V2 - https://arxiv.org/abs/2111.09883
* Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
* TResNet - https://arxiv.org/abs/2003.13630
* Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf
* Visformer - https://arxiv.org/abs/2104.12533
* Vision Transformer - https://arxiv.org/abs/2010.11929
* VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
* VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
* Xception - https://arxiv.org/abs/1610.02357
* Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
* Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
* XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681

## Features

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

* All models have a common default configuration interface and API for
    * accessing/changing the classifier - `get_classifier` and `reset_classifier`
    * doing a forward pass on just the features - `forward_features` (see [documentation](https://rwightman.github.io/pytorch-image-models/feature_extraction/))
    * these makes it easy to write consistent network wrappers that work with any of the models
* All models support multi-scale feature map extraction (feature pyramids) via create_model (see [documentation](https://rwightman.github.io/pytorch-image-models/feature_extraction/))
    * `create_model(name, features_only=True, out_indices=..., output_stride=...)`
    * `out_indices` creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the `C(i + 1)` feature level.
    * `output_stride` creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this.
    * feature map channel counts, reduction level (stride) can be queried AFTER model creation via the `.feature_info` member
* All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
* High performance [reference training, validation, and inference scripts](https://rwightman.github.io/pytorch-image-models/scripts/) that work in several process/GPU modes:
    * NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
    * PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
    * PyTorch w/ single GPU single process (AMP optional)
* A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
* A 'Test Time Pool' wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
* Learning rate schedulers
  * Ideas adopted from
     * [AllenNLP schedulers](https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers)
     * [FAIRseq lr_scheduler](https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler)
     * SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983)
  * Schedulers include `step`, `cosine` w/ restarts, `tanh` w/ restarts, `plateau`
* Optimizers:
    * `rmsprop_tf` adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour.
    * `radam` by [Liyuan Liu](https://github.com/LiyuanLucasLiu/RAdam) (https://arxiv.org/abs/1908.03265)
    * `novograd` by [Masashi Kimura](https://github.com/convergence-lab/novograd) (https://arxiv.org/abs/1905.11286)
    * `lookahead` adapted from impl by [Liam](https://github.com/alphadl/lookahead.pytorch) (https://arxiv.org/abs/1907.08610)
    * `fused<name>` optimizers by name with [NVIDIA Apex](https://github.com/NVIDIA/apex/tree/master/apex/optimizers) installed
    * `adamp` and `sgdp` by [Naver ClovAI](https://github.com/clovaai) (https://arxiv.org/abs/2006.08217)
    * `adafactor` adapted from [FAIRSeq impl](https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py) (https://arxiv.org/abs/1804.04235)
    * `adahessian` by [David Samuel](https://github.com/davda54/ada-hessian) (https://arxiv.org/abs/2006.00719)
* Random Erasing from [Zhun Zhong](https://github.com/zhunzhong07/Random-Erasing/blob/master/transforms.py)  (https://arxiv.org/abs/1708.04896)
* Mixup (https://arxiv.org/abs/1710.09412)
* CutMix (https://arxiv.org/abs/1905.04899)
* AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py)
* AugMix w/ JSD loss (https://arxiv.org/abs/1912.02781), JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well
* SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data
* DropPath aka "Stochastic Depth" (https://arxiv.org/abs/1603.09382) 
* DropBlock (https://arxiv.org/abs/1810.12890)
* Blur Pooling (https://arxiv.org/abs/1904.11486)
* Space-to-Depth by [mrT23](https://github.com/mrT23/TResNet/blob/master/src/models/tresnet/layers/space_to_depth.py) (https://arxiv.org/abs/1801.04590) -- original paper?
* Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets)
* An extensive selection of channel and/or spatial attention modules:
    * Bottleneck Transformer - https://arxiv.org/abs/2101.11605
    * CBAM - https://arxiv.org/abs/1807.06521
    * Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667
    * Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151
    * Gather-Excite (GE) - https://arxiv.org/abs/1810.12348
    * Global Context (GC) - https://arxiv.org/abs/1904.11492
    * Halo - https://arxiv.org/abs/2103.12731
    * Involution - https://arxiv.org/abs/2103.06255
    * Lambda Layer - https://arxiv.org/abs/2102.08602
    * Non-Local (NL) -  https://arxiv.org/abs/1711.07971
    * Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507
    * Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586
    * Split (SPLAT) - https://arxiv.org/abs/2004.08955
    * Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030

## Results

Model validation results can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/results/) and in the [results tables](results/README.md)

## Getting Started (Documentation)

My current [documentation](https://rwightman.github.io/pytorch-image-models/) for `timm` covers the basics.

Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) will be the documentation focus going forward and will eventually replace the `github.io` docs above.

[Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail.

[timmdocs](http://timm.fast.ai/) is quickly becoming a much more comprehensive set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs.

[paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`.

## Train, Validation, Inference Scripts

The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See [documentation](https://rwightman.github.io/pytorch-image-models/scripts/) for some basics and [training hparams](https://rwightman.github.io/pytorch-image-models/training_hparam_examples) for some train examples that produce SOTA ImageNet results.

## Awesome PyTorch Resources

One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below.

### Object Detection, Instance and Semantic Segmentation
* Detectron2 - https://github.com/facebookresearch/detectron2
* Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch
* EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch

### Computer Vision / Image Augmentation
* Albumentations - https://github.com/albumentations-team/albumentations
* Kornia - https://github.com/kornia/kornia

### Knowledge Distillation
* RepDistiller - https://github.com/HobbitLong/RepDistiller
* torchdistill - https://github.com/yoshitomo-matsubara/torchdistill

### Metric Learning
* PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning

### Training / Frameworks
* fastai - https://github.com/fastai/fastai

## Licenses

### Code
The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue.

### Pretrained Weights
So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product.

#### Pretrained on more than ImageNet
Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.

## Citing

### BibTeX

```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```

### Latest DOI

[![DOI](https://zenodo.org/badge/168799526.svg)](https://zenodo.org/badge/latestdoi/168799526)


%package help
Summary:	Development documents and examples for timm
Provides:	python3-timm-doc
%description help
# PyTorch Image Models
- [Sponsors](#sponsors)
- [What's New](#whats-new)
- [Introduction](#introduction)
- [Models](#models)
- [Features](#features)
- [Results](#results)
- [Getting Started (Documentation)](#getting-started-documentation)
- [Train, Validation, Inference Scripts](#train-validation-inference-scripts)
- [Awesome PyTorch Resources](#awesome-pytorch-resources)
- [Licenses](#licenses)
- [Citing](#citing)

## Sponsors

Thanks to the following for hardware support:
* TPU Research Cloud (TRC) (https://sites.research.google/trc/about/)
* Nvidia (https://www.nvidia.com/en-us/)

And a big thanks to all GitHub sponsors who helped with some of my costs before I joined Hugging Face.

## What's New

### March 23, 2022
* 0.6.13 release to include Python 3.11 fix. Please try 0.8.x pre-releases (main branch or `pip install --pre timm`) for latest (transitioning to a 0.9 release soon).

### Oct 10, 2022
* More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments:
  * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm)
  * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320  (G) (uses ConvNeXt conv block, no BN)
  * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G)
  * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN)
  * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320  (T)
  * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun.
  
### Sept 23, 2022
* LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier)
  * vit_base_patch32_224_clip_laion2b
  * vit_large_patch14_224_clip_laion2b
  * vit_huge_patch14_224_clip_laion2b
  * vit_giant_patch14_224_clip_laion2b

### Sept 7, 2022
* Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future
* Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2
* Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants:
  * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320  (T)
  * `maxvit_tiny_rw_224` - 83.5 @ 224 (G)
  * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T)

### Aug 29, 2022
* MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this:
  * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320  (T)

### Aug 26, 2022
* CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models
  * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers
  * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit
* Initial CoAtNet and MaxVit timm pretrained weights (working on more):
  * `coatnet_nano_rw_224` - 81.7 @ 224  (T)
  * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T)
  * `coatnet_0_rw_224` - 82.4  (T)  -- NOTE timm '0' coatnets have 2 more 3rd stage blocks
  * `coatnet_bn_0_rw_224` - 82.4  (T)
  * `maxvit_nano_rw_256` - 82.9 @ 256  (T)
  * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320  (T)
  * `coatnet_1_rw_224` - 83.6 @ 224 (G) 
  * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained
* GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes)
* MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit)
* EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer)
* PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT)
* 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost)


### Aug 15, 2022
* ConvNeXt atto weights added
  * `convnext_atto` - 75.7 @ 224, 77.0 @ 288
  * `convnext_atto_ols` - 75.9  @ 224, 77.2 @ 288

### Aug 5, 2022
* More custom ConvNeXt smaller model defs with weights 
  * `convnext_femto` - 77.5 @ 224, 78.7 @ 288
  * `convnext_femto_ols` - 77.9  @ 224, 78.9 @ 288
  * `convnext_pico` - 79.5 @ 224, 80.4 @ 288
  * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288
  * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288
* Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt)

### July 28, 2022
* Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)!

### July 27, 2022
* All runtime benchmark and validation result csv files are finally up-to-date!
* A few more weights & model defs added:
  * `darknetaa53` -  79.8 @ 256, 80.5 @ 288
  * `convnext_nano` - 80.8 @ 224, 81.5 @ 288
  * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288
  * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288
  * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288
  * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320
* `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! 
* Add output_stride=8 and 16 support to ConvNeXt (dilation)
* deit3 models not being able to resize pos_emb fixed
* Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5)

### July 8, 2022
More models, more fixes
* Official research models (w/ weights) added:
  * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt)
  * MobileViT-V2 from (https://github.com/apple/ml-cvnets)
  * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit)
* My own models:
  * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14)
  * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs.
  * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token.
  * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights.
* My own model weight results (all ImageNet-1k training)
  * `resnet10t` - 66.5 @ 176, 68.3 @ 224
  * `resnet14t` - 71.3 @ 176, 72.3 @ 224
  * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288
  * `darknet53` -  80.0 @ 256, 80.5 @ 288
  * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288
  * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288
  * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288
  * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288
  * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320
  * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320
  * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320
  * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320
* `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs.
* Hugging Face Hub support fixes verified, demo notebook TBA
* Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation.
* Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103)
* Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. 
  * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. 
  * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py`
* Numerous bug fixes
* Currently testing for imminent PyPi 0.6.x release
* LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)?
* ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ...

### May 13, 2022
* Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript.
* Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects.
* More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program)
  * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool
  * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake)
* Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020)
* Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials
* Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg)

### May 2, 2022
* Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`)
  * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool
  * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool
  * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool
* Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`)
* `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae).

### April 22, 2022
* `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/).
* Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress.
  * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288
  * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288

### March 23, 2022
* Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795)
* `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs.

### March 21, 2022
* Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required.
* Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights)
  * `regnety_040` - 82.3 @ 224, 82.96 @ 288
  * `regnety_064` - 83.0 @ 224, 83.65 @ 288
  * `regnety_080` - 83.17 @ 224, 83.86 @ 288
  * `regnetv_040` - 82.44 @ 224, 83.18 @ 288   (timm pre-act)
  * `regnetv_064` - 83.1 @ 224, 83.71 @ 288   (timm pre-act)
  * `regnetz_040` - 83.67 @ 256, 84.25 @ 320
  * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
  * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)
  * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)
  * `regnetz_c16_evos`  - 81.9 @ 256, 82.64 @ 320 (EvoNormS)
  * `regnetz_d8_evos`  - 83.42 @ 256, 84.04 @ 320 (EvoNormS)
  * `xception41p` - 82 @ 299   (timm pre-act)
  * `xception65` -  83.17 @ 299
  * `xception65p` -  83.14 @ 299   (timm pre-act)
  * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288
  * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288
  * `resnetrs200` - 83.85 @ 256, 84.44 @ 320
* HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon)
* SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks.
* Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2
* MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets
* PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer
* VOLO models w/ weights adapted from https://github.com/sail-sg/volo
* Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc
* Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception
* Grouped conv support added to EfficientNet family
* Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler
* Gradient checkpointing support added to many models
* `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head`
* All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head`

### Feb 2, 2022
* [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055)
* I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so.
  * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs!
  * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable.

### Jan 14, 2022
* Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon....
* Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features
* Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way...
  * `mnasnet_small` - 65.6 top-1
  * `mobilenetv2_050` - 65.9
  * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1
  * `semnasnet_075` - 73
  * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0
* TinyNet models added by [rsomani95](https://github.com/rsomani95)
* LCNet added via MobileNetV3 architecture

### Nov 22, 2021
* A number of updated weights anew new model defs
  * `eca_halonext26ts` - 79.5 @ 256
  * `resnet50_gn` (new) - 80.1 @ 224, 81.3 @ 288
  * `resnet50` - 80.7 @ 224, 80.9 @ 288 (trained at 176, not replacing current a1 weights as default since these don't scale as well to higher res, [weights](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth))
  * `resnext50_32x4d` - 81.1 @ 224, 82.0 @ 288
  * `sebotnet33ts_256` (new) - 81.2 @ 224
  * `lamhalobotnet50ts_256` - 81.5 @ 256
  * `halonet50ts` - 81.7 @ 256
  * `halo2botnet50ts_256` - 82.0 @ 256
  * `resnet101` - 82.0 @ 224, 82.8 @ 288
  * `resnetv2_101` (new) - 82.1 @ 224, 83.0 @ 288
  * `resnet152` - 82.8 @ 224, 83.5 @ 288
  * `regnetz_d8` (new) - 83.5 @ 256, 84.0 @ 320
  * `regnetz_e8` (new) - 84.5 @ 256, 85.0 @ 320
* `vit_base_patch8_224` (85.8 top-1) & `in21k` variant weights added thanks [Martins Bruveris](https://github.com/martinsbruveris)
* Groundwork in for FX feature extraction thanks to [Alexander Soare](https://github.com/alexander-soare)
  * models updated for tracing compatibility (almost full support with some distlled transformer exceptions)

### Oct 19, 2021
* ResNet strikes back (https://arxiv.org/abs/2110.00476) weights added, plus any extra training components used. Model weights and some more details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights)
* BCE loss and Repeated Augmentation support for RSB paper
* 4 series of ResNet based attention model experiments being added (implemented across byobnet.py/byoanet.py). These include all sorts of attention, from channel attn like SE, ECA to 2D QKV self-attention layers such as Halo, Bottlneck, Lambda. Details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* Working implementations of the following 2D self-attention modules (likely to be differences from paper or eventual official impl):
  * Halo (https://arxiv.org/abs/2103.12731)
  * Bottleneck Transformer (https://arxiv.org/abs/2101.11605)
  * LambdaNetworks (https://arxiv.org/abs/2102.08602)
* A RegNetZ series of models with some attention experiments (being added to). These do not follow the paper (https://arxiv.org/abs/2103.06877) in any way other than block architecture, details of official models are not available. See more here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights)
* ConvMixer (https://openreview.net/forum?id=TVHS5Y4dNvM), CrossVit (https://arxiv.org/abs/2103.14899), and BeiT (https://arxiv.org/abs/2106.08254) architectures + weights added
* freeze/unfreeze helpers by [Alexander Soare](https://github.com/alexander-soare)

### Aug 18, 2021
* Optimizer bonanza!
  * Add LAMB and LARS optimizers, incl trust ratio clipping options. Tweaked to work properly in PyTorch XLA (tested on TPUs w/ `timm bits` [branch](https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu/timm/bits))
  * Add MADGRAD from FB research w/ a few tweaks (decoupled decay option, step handling that works with PyTorch XLA)
  * Some cleanup on all optimizers and factory. No more `.data`, a bit more consistency, unit tests for all!
  * SGDP and AdamP still won't work with PyTorch XLA but others should (have yet to test Adabelief, Adafactor, Adahessian myself).
* EfficientNet-V2 XL TF ported weights added, but they don't validate well in PyTorch (L is better). The pre-processing for the V2 TF training is a bit diff and the fine-tuned 21k -> 1k weights are very sensitive and less robust than the 1k weights.
* Added PyTorch trained EfficientNet-V2 'Tiny' w/ GlobalContext attn weights. Only .1-.2 top-1 better than the SE so more of a curiosity for those interested.

## Introduction

Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything.

## Models

All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated. Here are some example [training hparams](https://rwightman.github.io/pytorch-image-models/training_hparam_examples) to get you started.

A full version of the list below with source links can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/models/).

* Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
* BEiT - https://arxiv.org/abs/2106.08254
* Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
* Bottleneck Transformers - https://arxiv.org/abs/2101.11605
* CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
* CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
* CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
* ConvNeXt - https://arxiv.org/abs/2201.03545
* ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
* DeiT - https://arxiv.org/abs/2012.12877
* DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
* DenseNet - https://arxiv.org/abs/1608.06993
* DLA - https://arxiv.org/abs/1707.06484
* DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
* EdgeNeXt - https://arxiv.org/abs/2206.10589
* EfficientFormer - https://arxiv.org/abs/2206.01191
* EfficientNet (MBConvNet Family)
    * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
    * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
    * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
    * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
    * EfficientNet V2 - https://arxiv.org/abs/2104.00298
    * FBNet-C - https://arxiv.org/abs/1812.03443
    * MixNet - https://arxiv.org/abs/1907.09595
    * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
    * MobileNet-V2 - https://arxiv.org/abs/1801.04381
    * Single-Path NAS - https://arxiv.org/abs/1904.02877
    * TinyNet - https://arxiv.org/abs/2010.14819
* GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
* GhostNet - https://arxiv.org/abs/1911.11907
* gMLP - https://arxiv.org/abs/2105.08050
* GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
* Halo Nets - https://arxiv.org/abs/2103.12731
* HRNet - https://arxiv.org/abs/1908.07919
* Inception-V3 - https://arxiv.org/abs/1512.00567
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* Lambda Networks - https://arxiv.org/abs/2102.08602
* LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
* MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
* MLP-Mixer - https://arxiv.org/abs/2105.01601
* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
  * FBNet-V3 - https://arxiv.org/abs/2006.02049
  * HardCoRe-NAS - https://arxiv.org/abs/2102.11646
  * LCNet - https://arxiv.org/abs/2109.15099
* MobileViT - https://arxiv.org/abs/2110.02178
* MobileViT-V2 - https://arxiv.org/abs/2206.02680
* MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
* NASNet-A - https://arxiv.org/abs/1707.07012
* NesT - https://arxiv.org/abs/2105.12723
* NFNet-F - https://arxiv.org/abs/2102.06171
* NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
* PNasNet - https://arxiv.org/abs/1712.00559
* PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
* Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
* PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
* RegNet - https://arxiv.org/abs/2003.13678
* RegNetZ - https://arxiv.org/abs/2103.06877
* RepVGG - https://arxiv.org/abs/2101.03697
* ResMLP - https://arxiv.org/abs/2105.03404
* ResNet/ResNeXt
    * ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
    * ResNeXt - https://arxiv.org/abs/1611.05431
    * 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
    * Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
    * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
    * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
    * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
    * ResNet-RS - https://arxiv.org/abs/2103.07579
* Res2Net - https://arxiv.org/abs/1904.01169
* ResNeSt - https://arxiv.org/abs/2004.08955
* ReXNet - https://arxiv.org/abs/2007.00992
* SelecSLS - https://arxiv.org/abs/1907.00837
* Selective Kernel Networks - https://arxiv.org/abs/1903.06586
* Sequencer2D - https://arxiv.org/abs/2205.01972
* Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
* Swin Transformer - https://arxiv.org/abs/2103.14030
* Swin Transformer V2 - https://arxiv.org/abs/2111.09883
* Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
* TResNet - https://arxiv.org/abs/2003.13630
* Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf
* Visformer - https://arxiv.org/abs/2104.12533
* Vision Transformer - https://arxiv.org/abs/2010.11929
* VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
* VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
* Xception - https://arxiv.org/abs/1610.02357
* Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
* Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
* XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681

## Features

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

* All models have a common default configuration interface and API for
    * accessing/changing the classifier - `get_classifier` and `reset_classifier`
    * doing a forward pass on just the features - `forward_features` (see [documentation](https://rwightman.github.io/pytorch-image-models/feature_extraction/))
    * these makes it easy to write consistent network wrappers that work with any of the models
* All models support multi-scale feature map extraction (feature pyramids) via create_model (see [documentation](https://rwightman.github.io/pytorch-image-models/feature_extraction/))
    * `create_model(name, features_only=True, out_indices=..., output_stride=...)`
    * `out_indices` creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the `C(i + 1)` feature level.
    * `output_stride` creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this.
    * feature map channel counts, reduction level (stride) can be queried AFTER model creation via the `.feature_info` member
* All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
* High performance [reference training, validation, and inference scripts](https://rwightman.github.io/pytorch-image-models/scripts/) that work in several process/GPU modes:
    * NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
    * PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
    * PyTorch w/ single GPU single process (AMP optional)
* A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
* A 'Test Time Pool' wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
* Learning rate schedulers
  * Ideas adopted from
     * [AllenNLP schedulers](https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers)
     * [FAIRseq lr_scheduler](https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler)
     * SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983)
  * Schedulers include `step`, `cosine` w/ restarts, `tanh` w/ restarts, `plateau`
* Optimizers:
    * `rmsprop_tf` adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour.
    * `radam` by [Liyuan Liu](https://github.com/LiyuanLucasLiu/RAdam) (https://arxiv.org/abs/1908.03265)
    * `novograd` by [Masashi Kimura](https://github.com/convergence-lab/novograd) (https://arxiv.org/abs/1905.11286)
    * `lookahead` adapted from impl by [Liam](https://github.com/alphadl/lookahead.pytorch) (https://arxiv.org/abs/1907.08610)
    * `fused<name>` optimizers by name with [NVIDIA Apex](https://github.com/NVIDIA/apex/tree/master/apex/optimizers) installed
    * `adamp` and `sgdp` by [Naver ClovAI](https://github.com/clovaai) (https://arxiv.org/abs/2006.08217)
    * `adafactor` adapted from [FAIRSeq impl](https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py) (https://arxiv.org/abs/1804.04235)
    * `adahessian` by [David Samuel](https://github.com/davda54/ada-hessian) (https://arxiv.org/abs/2006.00719)
* Random Erasing from [Zhun Zhong](https://github.com/zhunzhong07/Random-Erasing/blob/master/transforms.py)  (https://arxiv.org/abs/1708.04896)
* Mixup (https://arxiv.org/abs/1710.09412)
* CutMix (https://arxiv.org/abs/1905.04899)
* AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py)
* AugMix w/ JSD loss (https://arxiv.org/abs/1912.02781), JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well
* SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data
* DropPath aka "Stochastic Depth" (https://arxiv.org/abs/1603.09382) 
* DropBlock (https://arxiv.org/abs/1810.12890)
* Blur Pooling (https://arxiv.org/abs/1904.11486)
* Space-to-Depth by [mrT23](https://github.com/mrT23/TResNet/blob/master/src/models/tresnet/layers/space_to_depth.py) (https://arxiv.org/abs/1801.04590) -- original paper?
* Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets)
* An extensive selection of channel and/or spatial attention modules:
    * Bottleneck Transformer - https://arxiv.org/abs/2101.11605
    * CBAM - https://arxiv.org/abs/1807.06521
    * Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667
    * Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151
    * Gather-Excite (GE) - https://arxiv.org/abs/1810.12348
    * Global Context (GC) - https://arxiv.org/abs/1904.11492
    * Halo - https://arxiv.org/abs/2103.12731
    * Involution - https://arxiv.org/abs/2103.06255
    * Lambda Layer - https://arxiv.org/abs/2102.08602
    * Non-Local (NL) -  https://arxiv.org/abs/1711.07971
    * Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507
    * Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586
    * Split (SPLAT) - https://arxiv.org/abs/2004.08955
    * Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030

## Results

Model validation results can be found in the [documentation](https://rwightman.github.io/pytorch-image-models/results/) and in the [results tables](results/README.md)

## Getting Started (Documentation)

My current [documentation](https://rwightman.github.io/pytorch-image-models/) for `timm` covers the basics.

Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) will be the documentation focus going forward and will eventually replace the `github.io` docs above.

[Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail.

[timmdocs](http://timm.fast.ai/) is quickly becoming a much more comprehensive set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs.

[paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`.

## Train, Validation, Inference Scripts

The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See [documentation](https://rwightman.github.io/pytorch-image-models/scripts/) for some basics and [training hparams](https://rwightman.github.io/pytorch-image-models/training_hparam_examples) for some train examples that produce SOTA ImageNet results.

## Awesome PyTorch Resources

One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below.

### Object Detection, Instance and Semantic Segmentation
* Detectron2 - https://github.com/facebookresearch/detectron2
* Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch
* EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch

### Computer Vision / Image Augmentation
* Albumentations - https://github.com/albumentations-team/albumentations
* Kornia - https://github.com/kornia/kornia

### Knowledge Distillation
* RepDistiller - https://github.com/HobbitLong/RepDistiller
* torchdistill - https://github.com/yoshitomo-matsubara/torchdistill

### Metric Learning
* PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning

### Training / Frameworks
* fastai - https://github.com/fastai/fastai

## Licenses

### Code
The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue.

### Pretrained Weights
So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product.

#### Pretrained on more than ImageNet
Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.

## Citing

### BibTeX

```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```

### Latest DOI

[![DOI](https://zenodo.org/badge/168799526.svg)](https://zenodo.org/badge/latestdoi/168799526)


%prep
%autosetup -n timm-0.6.13

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-timm -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.13-1
- Package Spec generated