summaryrefslogtreecommitdiff
path: root/python-tinyec.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-tinyec.spec')
-rw-r--r--python-tinyec.spec315
1 files changed, 315 insertions, 0 deletions
diff --git a/python-tinyec.spec b/python-tinyec.spec
new file mode 100644
index 0000000..6725699
--- /dev/null
+++ b/python-tinyec.spec
@@ -0,0 +1,315 @@
+%global _empty_manifest_terminate_build 0
+Name: python-tinyec
+Version: 0.4.0
+Release: 1
+Summary: A tiny library to perform arithmetic operations on elliptic curves in pure python
+License: GPLv3
+URL: https://github.com/alexmgr/tinyec
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/76/2f/1bf6060620aae864597422ed50a0b46ad66a720d22e0f5d6c62e58aebff9/tinyec-0.4.0.tar.gz
+BuildArch: noarch
+
+
+%description
+# tinyec
+A tiny library to perform arithmetic operations on elliptic curves in pure python. No dependencies.
+
+**This is not a library suitable for production.** It is useful for security professionals to understand the inner workings of EC, and be able to play with pre-defined curves.
+
+## installation
+`pip install tinyec`
+
+## usage
+There are 2 main classes:
+* Curve(), which describes an elliptic curve in a finite field
+* Point(), which describes a point belonging to an EC
+
+**Warning** Calculation on points outside the curve are allowed. They will only raise a warning.
+
+### working on existing curves
+Example use on the NIST routine samples => https://www.nsa.gov/ia/_files/nist-routines.pdf:
+```python
+>>> import tinyec.ec as ec
+>>> import tinyec.registry as reg
+>>> c = reg.get_curve("secp192r1")
+>>> s = ec.Point(c, 0xd458e7d127ae671b0c330266d246769353a012073e97acf8, 0x325930500d851f336bddc050cf7fb11b5673a1645086df3b)
+>>> t = ec.Point(c, 0xf22c4395213e9ebe67ddecdd87fdbd01be16fb059b9753a4, 0x264424096af2b3597796db48f8dfb41fa9cecc97691a9c79)
+>>> r = s + t
+>>> r
+(1787070900316344022479363585363935252075532448940096815760, 1583034776780933252095415958625802984888372377603917916747) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065
+(mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x48e1e4096b9b8e5ca9d0f1f077b8abf58e843894de4d0290L'
+>>> hex(r.y)
+'0x408fa77c797cd7dbfb16aa48a3648d3d63c94117d7b6aa4bL'
+>>> r = s - t
+>>> r
+(6193438478050209507979672067809269724375390027440522152494, 226636415264149817017346905052752138772359775362461041003) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
+mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0xfc9683cc5abfb4fe0cc8cc3bc9f61eabc4688f11e9f64a2eL'
+>>> hex(r.y)
+'0x93e31d00fb78269732b1bd2a73c23cdd31745d0523d816bL'
+>>> r = 2 * s
+>>> r
+(1195895923065450997501505402941681398272052708885411031394, 340030206158745947396451508065335698335058477174385838543) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
+mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x30c5bc6b8c7da25354b373dc14dd8a0eba42d25a3f6e6962L'
+>>> hex(r.y)
+'0xdde14bc4249a721c407aedbf011e2ddbbcb2968c9d889cfL'
+>>> d = 0xa78a236d60baec0c5dd41b33a542463a8255391af64c74ee
+>>> r = d * s
+>>> hex(r.x)
+'0x1faee4205a4f669d2d0a8f25e3bcec9a62a6952965bf6d31L'
+>>> hex(r.y)
+'0x5ff2cdfa508a2581892367087c696f179e7a4d7e8260fb06L'
+>>> e = 0xc4be3d53ec3089e71e4de8ceab7cce889bc393cd85b972bc
+>>> r = d * s + e * t
+>>> r
+(39786866609245082371772779541859439402855864496422607838, 547967566579883709478937502153554894699060378424501614148) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mo
+d 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x19f64eed8fa9b72b7dfea82c17c9bfa60ecb9e1778b5bdeL'
+>>> hex(r.y)
+'0x16590c5fcd8655fa4ced33fb800e2a7e3c61f35d83503644L'
+```
+
+### working on custom curves
+If needed, you can also work on your own curves. Here we take a a prime field 97, with a generator point (1, 2), an order 5 and a cofactor of 1:
+```python
+>>> import tinyec.ec as ec
+>>> field = ec.SubGroup(97, (1, 2), 5, 1)
+>>> curve = ec.Curve(2, 3, field)
+tinyec/ec.py:115: UserWarning: Point (1, 2) is not on curve "undefined" => y^2 = x^3 + 2x + 3 (mod 97)
+ warnings.warn("Point (%d, %d) is not on curve %s" % (self.x, self.y, self.curve))
+>>> # Warning is generated because the generator point does not belong to the curve
+>>> p1 = ec.Point(curve, -5, 3)
+>>> p1.on_curve
+False
+>>> p2 = ec.Point(curve, 22, 5)
+>>> p2.on_curve
+True
+>>> print(p1 + p2)
+(18, 42) off "undefined" => y^2 = x^3 + 2x + 3 (mod 97)
+```
+
+%package -n python3-tinyec
+Summary: A tiny library to perform arithmetic operations on elliptic curves in pure python
+Provides: python-tinyec
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-tinyec
+# tinyec
+A tiny library to perform arithmetic operations on elliptic curves in pure python. No dependencies.
+
+**This is not a library suitable for production.** It is useful for security professionals to understand the inner workings of EC, and be able to play with pre-defined curves.
+
+## installation
+`pip install tinyec`
+
+## usage
+There are 2 main classes:
+* Curve(), which describes an elliptic curve in a finite field
+* Point(), which describes a point belonging to an EC
+
+**Warning** Calculation on points outside the curve are allowed. They will only raise a warning.
+
+### working on existing curves
+Example use on the NIST routine samples => https://www.nsa.gov/ia/_files/nist-routines.pdf:
+```python
+>>> import tinyec.ec as ec
+>>> import tinyec.registry as reg
+>>> c = reg.get_curve("secp192r1")
+>>> s = ec.Point(c, 0xd458e7d127ae671b0c330266d246769353a012073e97acf8, 0x325930500d851f336bddc050cf7fb11b5673a1645086df3b)
+>>> t = ec.Point(c, 0xf22c4395213e9ebe67ddecdd87fdbd01be16fb059b9753a4, 0x264424096af2b3597796db48f8dfb41fa9cecc97691a9c79)
+>>> r = s + t
+>>> r
+(1787070900316344022479363585363935252075532448940096815760, 1583034776780933252095415958625802984888372377603917916747) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065
+(mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x48e1e4096b9b8e5ca9d0f1f077b8abf58e843894de4d0290L'
+>>> hex(r.y)
+'0x408fa77c797cd7dbfb16aa48a3648d3d63c94117d7b6aa4bL'
+>>> r = s - t
+>>> r
+(6193438478050209507979672067809269724375390027440522152494, 226636415264149817017346905052752138772359775362461041003) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
+mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0xfc9683cc5abfb4fe0cc8cc3bc9f61eabc4688f11e9f64a2eL'
+>>> hex(r.y)
+'0x93e31d00fb78269732b1bd2a73c23cdd31745d0523d816bL'
+>>> r = 2 * s
+>>> r
+(1195895923065450997501505402941681398272052708885411031394, 340030206158745947396451508065335698335058477174385838543) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
+mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x30c5bc6b8c7da25354b373dc14dd8a0eba42d25a3f6e6962L'
+>>> hex(r.y)
+'0xdde14bc4249a721c407aedbf011e2ddbbcb2968c9d889cfL'
+>>> d = 0xa78a236d60baec0c5dd41b33a542463a8255391af64c74ee
+>>> r = d * s
+>>> hex(r.x)
+'0x1faee4205a4f669d2d0a8f25e3bcec9a62a6952965bf6d31L'
+>>> hex(r.y)
+'0x5ff2cdfa508a2581892367087c696f179e7a4d7e8260fb06L'
+>>> e = 0xc4be3d53ec3089e71e4de8ceab7cce889bc393cd85b972bc
+>>> r = d * s + e * t
+>>> r
+(39786866609245082371772779541859439402855864496422607838, 547967566579883709478937502153554894699060378424501614148) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mo
+d 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x19f64eed8fa9b72b7dfea82c17c9bfa60ecb9e1778b5bdeL'
+>>> hex(r.y)
+'0x16590c5fcd8655fa4ced33fb800e2a7e3c61f35d83503644L'
+```
+
+### working on custom curves
+If needed, you can also work on your own curves. Here we take a a prime field 97, with a generator point (1, 2), an order 5 and a cofactor of 1:
+```python
+>>> import tinyec.ec as ec
+>>> field = ec.SubGroup(97, (1, 2), 5, 1)
+>>> curve = ec.Curve(2, 3, field)
+tinyec/ec.py:115: UserWarning: Point (1, 2) is not on curve "undefined" => y^2 = x^3 + 2x + 3 (mod 97)
+ warnings.warn("Point (%d, %d) is not on curve %s" % (self.x, self.y, self.curve))
+>>> # Warning is generated because the generator point does not belong to the curve
+>>> p1 = ec.Point(curve, -5, 3)
+>>> p1.on_curve
+False
+>>> p2 = ec.Point(curve, 22, 5)
+>>> p2.on_curve
+True
+>>> print(p1 + p2)
+(18, 42) off "undefined" => y^2 = x^3 + 2x + 3 (mod 97)
+```
+
+%package help
+Summary: Development documents and examples for tinyec
+Provides: python3-tinyec-doc
+%description help
+# tinyec
+A tiny library to perform arithmetic operations on elliptic curves in pure python. No dependencies.
+
+**This is not a library suitable for production.** It is useful for security professionals to understand the inner workings of EC, and be able to play with pre-defined curves.
+
+## installation
+`pip install tinyec`
+
+## usage
+There are 2 main classes:
+* Curve(), which describes an elliptic curve in a finite field
+* Point(), which describes a point belonging to an EC
+
+**Warning** Calculation on points outside the curve are allowed. They will only raise a warning.
+
+### working on existing curves
+Example use on the NIST routine samples => https://www.nsa.gov/ia/_files/nist-routines.pdf:
+```python
+>>> import tinyec.ec as ec
+>>> import tinyec.registry as reg
+>>> c = reg.get_curve("secp192r1")
+>>> s = ec.Point(c, 0xd458e7d127ae671b0c330266d246769353a012073e97acf8, 0x325930500d851f336bddc050cf7fb11b5673a1645086df3b)
+>>> t = ec.Point(c, 0xf22c4395213e9ebe67ddecdd87fdbd01be16fb059b9753a4, 0x264424096af2b3597796db48f8dfb41fa9cecc97691a9c79)
+>>> r = s + t
+>>> r
+(1787070900316344022479363585363935252075532448940096815760, 1583034776780933252095415958625802984888372377603917916747) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065
+(mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x48e1e4096b9b8e5ca9d0f1f077b8abf58e843894de4d0290L'
+>>> hex(r.y)
+'0x408fa77c797cd7dbfb16aa48a3648d3d63c94117d7b6aa4bL'
+>>> r = s - t
+>>> r
+(6193438478050209507979672067809269724375390027440522152494, 226636415264149817017346905052752138772359775362461041003) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
+mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0xfc9683cc5abfb4fe0cc8cc3bc9f61eabc4688f11e9f64a2eL'
+>>> hex(r.y)
+'0x93e31d00fb78269732b1bd2a73c23cdd31745d0523d816bL'
+>>> r = 2 * s
+>>> r
+(1195895923065450997501505402941681398272052708885411031394, 340030206158745947396451508065335698335058477174385838543) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
+mod 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x30c5bc6b8c7da25354b373dc14dd8a0eba42d25a3f6e6962L'
+>>> hex(r.y)
+'0xdde14bc4249a721c407aedbf011e2ddbbcb2968c9d889cfL'
+>>> d = 0xa78a236d60baec0c5dd41b33a542463a8255391af64c74ee
+>>> r = d * s
+>>> hex(r.x)
+'0x1faee4205a4f669d2d0a8f25e3bcec9a62a6952965bf6d31L'
+>>> hex(r.y)
+'0x5ff2cdfa508a2581892367087c696f179e7a4d7e8260fb06L'
+>>> e = 0xc4be3d53ec3089e71e4de8ceab7cce889bc393cd85b972bc
+>>> r = d * s + e * t
+>>> r
+(39786866609245082371772779541859439402855864496422607838, 547967566579883709478937502153554894699060378424501614148) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mo
+d 6277101735386680763835789423207666416083908700390324961279)
+>>> hex(r.x)
+'0x19f64eed8fa9b72b7dfea82c17c9bfa60ecb9e1778b5bdeL'
+>>> hex(r.y)
+'0x16590c5fcd8655fa4ced33fb800e2a7e3c61f35d83503644L'
+```
+
+### working on custom curves
+If needed, you can also work on your own curves. Here we take a a prime field 97, with a generator point (1, 2), an order 5 and a cofactor of 1:
+```python
+>>> import tinyec.ec as ec
+>>> field = ec.SubGroup(97, (1, 2), 5, 1)
+>>> curve = ec.Curve(2, 3, field)
+tinyec/ec.py:115: UserWarning: Point (1, 2) is not on curve "undefined" => y^2 = x^3 + 2x + 3 (mod 97)
+ warnings.warn("Point (%d, %d) is not on curve %s" % (self.x, self.y, self.curve))
+>>> # Warning is generated because the generator point does not belong to the curve
+>>> p1 = ec.Point(curve, -5, 3)
+>>> p1.on_curve
+False
+>>> p2 = ec.Point(curve, 22, 5)
+>>> p2.on_curve
+True
+>>> print(p1 + p2)
+(18, 42) off "undefined" => y^2 = x^3 + 2x + 3 (mod 97)
+```
+
+%prep
+%autosetup -n tinyec-0.4.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-tinyec -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.0-1
+- Package Spec generated