summaryrefslogtreecommitdiff
path: root/python-torch-lr-finder.spec
blob: 990022efc90945a190b8e2f8ab483415c3d7c67e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
%global _empty_manifest_terminate_build 0
Name:		python-torch-lr-finder
Version:	0.2.1
Release:	1
Summary:	Pytorch implementation of the learning rate range test
License:	MIT License
URL:		https://github.com/davidtvs/pytorch-lr-finder
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/8b/71/9b07568ac209f956a6a60352952419bfefebe00d503717b0b6b4330bfbb7/torch-lr-finder-0.2.1.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-torch
Requires:	python3-tqdm
Requires:	python3-packaging
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-pytest-mock
Requires:	python3-flake8
Requires:	python3-black
Requires:	python3-pep8-naming
Requires:	python3-torchvision
Requires:	python3-ipywidgets
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-pytest-mock

%description
# PyTorch learning rate finder

![](https://github.com/davidtvs/pytorch-lr-finder/workflows/ci-build/badge.svg?branch=master)
[![codecov](https://codecov.io/gh/davidtvs/pytorch-lr-finder/branch/master/graph/badge.svg)](https://codecov.io/gh/davidtvs/pytorch-lr-finder)
[![](https://img.shields.io/pypi/v/torch-lr-finder)](https://pypi.org/project/torch-lr-finder/)

A PyTorch implementation of the learning rate range test detailed in [Cyclical Learning Rates for Training Neural Networks](https://arxiv.org/abs/1506.01186) by Leslie N. Smith and the tweaked version used by [fastai](https://github.com/fastai/fastai).

The learning rate range test is a test that provides valuable information about the optimal learning rate. During a pre-training run, the learning rate is increased linearly or exponentially between two boundaries. The low initial learning rate allows the network to start converging and as the learning rate is increased it will eventually be too large and the network will diverge.

Typically, a good static learning rate can be found half-way on the descending loss curve. In the plot below that would be `lr = 0.002`.

For cyclical learning rates (also detailed in Leslie Smith's paper) where the learning rate is cycled between two boundaries `(start_lr, end_lr)`, the author advises the point at which the loss starts descending and the point at which the loss stops descending or becomes ragged for `start_lr` and `end_lr` respectively.  In the plot below, `start_lr = 0.0002` and `end_lr=0.2`.

![Learning rate range test](images/lr_finder_cifar10.png)

## Installation

Python 3.5 and above:

```bash
pip install torch-lr-finder
```

Install with the support of mixed precision training (see also [this section](#Mixed-precision-training)):

```bash
pip install torch-lr-finder -v --global-option="apex"
```

## Implementation details and usage

### Tweaked version from fastai

Increases the learning rate in an exponential manner and computes the training loss for each learning rate. `lr_finder.plot()` plots the training loss versus logarithmic learning rate.

```python
from torch_lr_finder import LRFinder

model = ...
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-7, weight_decay=1e-2)
lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, end_lr=100, num_iter=100)
lr_finder.plot() # to inspect the loss-learning rate graph
lr_finder.reset() # to reset the model and optimizer to their initial state
```

### Leslie Smith's approach

Increases the learning rate linearly and computes the evaluation loss for each learning rate. `lr_finder.plot()` plots the evaluation loss versus learning rate.
This approach typically produces more precise curves because the evaluation loss is more susceptible to divergence but it takes significantly longer to perform the test, especially if the evaluation dataset is large.

```python
from torch_lr_finder import LRFinder

model = ...
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.1, weight_decay=1e-2)
lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, val_loader=val_loader, end_lr=1, num_iter=100, step_mode="linear")
lr_finder.plot(log_lr=False)
lr_finder.reset()
```

### Notes

- Examples for CIFAR10 and MNIST can be found in the examples folder.
- The optimizer passed to `LRFinder` should not have an `LRScheduler` attached to it.
- `LRFinder.range_test()` will change the model weights and the optimizer parameters. Both can be restored to their initial state with `LRFinder.reset()`.
- The learning rate and loss history can be accessed through `lr_finder.history`. This will return a dictionary with `lr` and `loss` keys.
- When using `step_mode="linear"` the learning rate range should be within the same order of magnitude.
- `LRFinder.range_test()` expects a pair of `input, label` to be returned from the `DataLoader` objects passed to it. The `input` must be ready to be passed to the model and the `label` must be ready to be passed to the `criterion` without any further data processing/handling/conversion. If you find yourself needing a workaround you can make use of the classes `TrainDataLoaderIter` and `ValDataLoaderIter` to perform any data processing/handling/conversion inbetween the `DataLoader` and the training/evaluation loop. You can find an example of how to use these classes in [examples/lrfinder_cifar10_dataloader_iter](examples/lrfinder_cifar10_dataloader_iter.ipynb).

## Additional support for training

### Gradient accumulation

You can set the `accumulation_steps` parameter in `LRFinder.range_test()` with a proper value to perform gradient accumulation:

```python
from torch.utils.data import DataLoader
from torch_lr_finder import LRFinder

desired_batch_size, real_batch_size = 32, 4
accumulation_steps = desired_batch_size // real_batch_size

dataset = ...

# Beware of the `batch_size` used by `DataLoader`
trainloader = DataLoader(dataset, batch_size=real_batch_size, shuffle=True)

model = ...
criterion = ...
optimizer = ...

# (Optional) With this setting, `amp.scale_loss()` will be adopted automatically.
# model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode="exp", accumulation_steps=accumulation_steps)
lr_finder.plot()
lr_finder.reset()
```

### Mixed precision training

Currently, we use [`apex`](https://github.com/NVIDIA/apex) as the dependency for mixed precision training.
To enable mixed precision training, you just need to call `amp.initialize()` before running `LRFinder`. e.g.

```python
from torch_lr_finder import LRFinder
from apex import amp

# Add this line before running `LRFinder`
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

lr_finder = LRFinder(model, optimizer, criterion, device='cuda')
lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp')
lr_finder.plot()
lr_finder.reset()
```

Note that the benefit of mixed precision training requires a nvidia GPU with tensor cores (see also: [NVIDIA/apex #297](https://github.com/NVIDIA/apex/issues/297))

Besides, you can try to set `torch.backends.cudnn.benchmark = True` to improve the training speed. (but it won't work for some cases, you should use it at your own risk)

## Contributing and pull requests

All contributions are welcome but first, have a look at [CONTRIBUTING.md](CONTRIBUTING.md).




%package -n python3-torch-lr-finder
Summary:	Pytorch implementation of the learning rate range test
Provides:	python-torch-lr-finder
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-torch-lr-finder
# PyTorch learning rate finder

![](https://github.com/davidtvs/pytorch-lr-finder/workflows/ci-build/badge.svg?branch=master)
[![codecov](https://codecov.io/gh/davidtvs/pytorch-lr-finder/branch/master/graph/badge.svg)](https://codecov.io/gh/davidtvs/pytorch-lr-finder)
[![](https://img.shields.io/pypi/v/torch-lr-finder)](https://pypi.org/project/torch-lr-finder/)

A PyTorch implementation of the learning rate range test detailed in [Cyclical Learning Rates for Training Neural Networks](https://arxiv.org/abs/1506.01186) by Leslie N. Smith and the tweaked version used by [fastai](https://github.com/fastai/fastai).

The learning rate range test is a test that provides valuable information about the optimal learning rate. During a pre-training run, the learning rate is increased linearly or exponentially between two boundaries. The low initial learning rate allows the network to start converging and as the learning rate is increased it will eventually be too large and the network will diverge.

Typically, a good static learning rate can be found half-way on the descending loss curve. In the plot below that would be `lr = 0.002`.

For cyclical learning rates (also detailed in Leslie Smith's paper) where the learning rate is cycled between two boundaries `(start_lr, end_lr)`, the author advises the point at which the loss starts descending and the point at which the loss stops descending or becomes ragged for `start_lr` and `end_lr` respectively.  In the plot below, `start_lr = 0.0002` and `end_lr=0.2`.

![Learning rate range test](images/lr_finder_cifar10.png)

## Installation

Python 3.5 and above:

```bash
pip install torch-lr-finder
```

Install with the support of mixed precision training (see also [this section](#Mixed-precision-training)):

```bash
pip install torch-lr-finder -v --global-option="apex"
```

## Implementation details and usage

### Tweaked version from fastai

Increases the learning rate in an exponential manner and computes the training loss for each learning rate. `lr_finder.plot()` plots the training loss versus logarithmic learning rate.

```python
from torch_lr_finder import LRFinder

model = ...
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-7, weight_decay=1e-2)
lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, end_lr=100, num_iter=100)
lr_finder.plot() # to inspect the loss-learning rate graph
lr_finder.reset() # to reset the model and optimizer to their initial state
```

### Leslie Smith's approach

Increases the learning rate linearly and computes the evaluation loss for each learning rate. `lr_finder.plot()` plots the evaluation loss versus learning rate.
This approach typically produces more precise curves because the evaluation loss is more susceptible to divergence but it takes significantly longer to perform the test, especially if the evaluation dataset is large.

```python
from torch_lr_finder import LRFinder

model = ...
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.1, weight_decay=1e-2)
lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, val_loader=val_loader, end_lr=1, num_iter=100, step_mode="linear")
lr_finder.plot(log_lr=False)
lr_finder.reset()
```

### Notes

- Examples for CIFAR10 and MNIST can be found in the examples folder.
- The optimizer passed to `LRFinder` should not have an `LRScheduler` attached to it.
- `LRFinder.range_test()` will change the model weights and the optimizer parameters. Both can be restored to their initial state with `LRFinder.reset()`.
- The learning rate and loss history can be accessed through `lr_finder.history`. This will return a dictionary with `lr` and `loss` keys.
- When using `step_mode="linear"` the learning rate range should be within the same order of magnitude.
- `LRFinder.range_test()` expects a pair of `input, label` to be returned from the `DataLoader` objects passed to it. The `input` must be ready to be passed to the model and the `label` must be ready to be passed to the `criterion` without any further data processing/handling/conversion. If you find yourself needing a workaround you can make use of the classes `TrainDataLoaderIter` and `ValDataLoaderIter` to perform any data processing/handling/conversion inbetween the `DataLoader` and the training/evaluation loop. You can find an example of how to use these classes in [examples/lrfinder_cifar10_dataloader_iter](examples/lrfinder_cifar10_dataloader_iter.ipynb).

## Additional support for training

### Gradient accumulation

You can set the `accumulation_steps` parameter in `LRFinder.range_test()` with a proper value to perform gradient accumulation:

```python
from torch.utils.data import DataLoader
from torch_lr_finder import LRFinder

desired_batch_size, real_batch_size = 32, 4
accumulation_steps = desired_batch_size // real_batch_size

dataset = ...

# Beware of the `batch_size` used by `DataLoader`
trainloader = DataLoader(dataset, batch_size=real_batch_size, shuffle=True)

model = ...
criterion = ...
optimizer = ...

# (Optional) With this setting, `amp.scale_loss()` will be adopted automatically.
# model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode="exp", accumulation_steps=accumulation_steps)
lr_finder.plot()
lr_finder.reset()
```

### Mixed precision training

Currently, we use [`apex`](https://github.com/NVIDIA/apex) as the dependency for mixed precision training.
To enable mixed precision training, you just need to call `amp.initialize()` before running `LRFinder`. e.g.

```python
from torch_lr_finder import LRFinder
from apex import amp

# Add this line before running `LRFinder`
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

lr_finder = LRFinder(model, optimizer, criterion, device='cuda')
lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp')
lr_finder.plot()
lr_finder.reset()
```

Note that the benefit of mixed precision training requires a nvidia GPU with tensor cores (see also: [NVIDIA/apex #297](https://github.com/NVIDIA/apex/issues/297))

Besides, you can try to set `torch.backends.cudnn.benchmark = True` to improve the training speed. (but it won't work for some cases, you should use it at your own risk)

## Contributing and pull requests

All contributions are welcome but first, have a look at [CONTRIBUTING.md](CONTRIBUTING.md).




%package help
Summary:	Development documents and examples for torch-lr-finder
Provides:	python3-torch-lr-finder-doc
%description help
# PyTorch learning rate finder

![](https://github.com/davidtvs/pytorch-lr-finder/workflows/ci-build/badge.svg?branch=master)
[![codecov](https://codecov.io/gh/davidtvs/pytorch-lr-finder/branch/master/graph/badge.svg)](https://codecov.io/gh/davidtvs/pytorch-lr-finder)
[![](https://img.shields.io/pypi/v/torch-lr-finder)](https://pypi.org/project/torch-lr-finder/)

A PyTorch implementation of the learning rate range test detailed in [Cyclical Learning Rates for Training Neural Networks](https://arxiv.org/abs/1506.01186) by Leslie N. Smith and the tweaked version used by [fastai](https://github.com/fastai/fastai).

The learning rate range test is a test that provides valuable information about the optimal learning rate. During a pre-training run, the learning rate is increased linearly or exponentially between two boundaries. The low initial learning rate allows the network to start converging and as the learning rate is increased it will eventually be too large and the network will diverge.

Typically, a good static learning rate can be found half-way on the descending loss curve. In the plot below that would be `lr = 0.002`.

For cyclical learning rates (also detailed in Leslie Smith's paper) where the learning rate is cycled between two boundaries `(start_lr, end_lr)`, the author advises the point at which the loss starts descending and the point at which the loss stops descending or becomes ragged for `start_lr` and `end_lr` respectively.  In the plot below, `start_lr = 0.0002` and `end_lr=0.2`.

![Learning rate range test](images/lr_finder_cifar10.png)

## Installation

Python 3.5 and above:

```bash
pip install torch-lr-finder
```

Install with the support of mixed precision training (see also [this section](#Mixed-precision-training)):

```bash
pip install torch-lr-finder -v --global-option="apex"
```

## Implementation details and usage

### Tweaked version from fastai

Increases the learning rate in an exponential manner and computes the training loss for each learning rate. `lr_finder.plot()` plots the training loss versus logarithmic learning rate.

```python
from torch_lr_finder import LRFinder

model = ...
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-7, weight_decay=1e-2)
lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, end_lr=100, num_iter=100)
lr_finder.plot() # to inspect the loss-learning rate graph
lr_finder.reset() # to reset the model and optimizer to their initial state
```

### Leslie Smith's approach

Increases the learning rate linearly and computes the evaluation loss for each learning rate. `lr_finder.plot()` plots the evaluation loss versus learning rate.
This approach typically produces more precise curves because the evaluation loss is more susceptible to divergence but it takes significantly longer to perform the test, especially if the evaluation dataset is large.

```python
from torch_lr_finder import LRFinder

model = ...
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.1, weight_decay=1e-2)
lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, val_loader=val_loader, end_lr=1, num_iter=100, step_mode="linear")
lr_finder.plot(log_lr=False)
lr_finder.reset()
```

### Notes

- Examples for CIFAR10 and MNIST can be found in the examples folder.
- The optimizer passed to `LRFinder` should not have an `LRScheduler` attached to it.
- `LRFinder.range_test()` will change the model weights and the optimizer parameters. Both can be restored to their initial state with `LRFinder.reset()`.
- The learning rate and loss history can be accessed through `lr_finder.history`. This will return a dictionary with `lr` and `loss` keys.
- When using `step_mode="linear"` the learning rate range should be within the same order of magnitude.
- `LRFinder.range_test()` expects a pair of `input, label` to be returned from the `DataLoader` objects passed to it. The `input` must be ready to be passed to the model and the `label` must be ready to be passed to the `criterion` without any further data processing/handling/conversion. If you find yourself needing a workaround you can make use of the classes `TrainDataLoaderIter` and `ValDataLoaderIter` to perform any data processing/handling/conversion inbetween the `DataLoader` and the training/evaluation loop. You can find an example of how to use these classes in [examples/lrfinder_cifar10_dataloader_iter](examples/lrfinder_cifar10_dataloader_iter.ipynb).

## Additional support for training

### Gradient accumulation

You can set the `accumulation_steps` parameter in `LRFinder.range_test()` with a proper value to perform gradient accumulation:

```python
from torch.utils.data import DataLoader
from torch_lr_finder import LRFinder

desired_batch_size, real_batch_size = 32, 4
accumulation_steps = desired_batch_size // real_batch_size

dataset = ...

# Beware of the `batch_size` used by `DataLoader`
trainloader = DataLoader(dataset, batch_size=real_batch_size, shuffle=True)

model = ...
criterion = ...
optimizer = ...

# (Optional) With this setting, `amp.scale_loss()` will be adopted automatically.
# model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

lr_finder = LRFinder(model, optimizer, criterion, device="cuda")
lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode="exp", accumulation_steps=accumulation_steps)
lr_finder.plot()
lr_finder.reset()
```

### Mixed precision training

Currently, we use [`apex`](https://github.com/NVIDIA/apex) as the dependency for mixed precision training.
To enable mixed precision training, you just need to call `amp.initialize()` before running `LRFinder`. e.g.

```python
from torch_lr_finder import LRFinder
from apex import amp

# Add this line before running `LRFinder`
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

lr_finder = LRFinder(model, optimizer, criterion, device='cuda')
lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp')
lr_finder.plot()
lr_finder.reset()
```

Note that the benefit of mixed precision training requires a nvidia GPU with tensor cores (see also: [NVIDIA/apex #297](https://github.com/NVIDIA/apex/issues/297))

Besides, you can try to set `torch.backends.cudnn.benchmark = True` to improve the training speed. (but it won't work for some cases, you should use it at your own risk)

## Contributing and pull requests

All contributions are welcome but first, have a look at [CONTRIBUTING.md](CONTRIBUTING.md).




%prep
%autosetup -n torch-lr-finder-0.2.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-torch-lr-finder -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1
- Package Spec generated