summaryrefslogtreecommitdiff
path: root/python-torch-sparse.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-torch-sparse.spec')
-rw-r--r--python-torch-sparse.spec708
1 files changed, 708 insertions, 0 deletions
diff --git a/python-torch-sparse.spec b/python-torch-sparse.spec
new file mode 100644
index 0000000..fad2b1d
--- /dev/null
+++ b/python-torch-sparse.spec
@@ -0,0 +1,708 @@
+%global _empty_manifest_terminate_build 0
+Name: python-torch-sparse
+Version: 0.6.17
+Release: 1
+Summary: PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
+License: MIT License
+URL: https://github.com/rusty1s/pytorch_sparse
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cb/ff/21d4674bdf232cd7a2bdbbbb04c35ba1cbdf444d4f3331f5d7eb6c5d4a8f/torch_sparse-0.6.17.tar.gz
+BuildArch: noarch
+
+
+%description
+This package consists of a small extension library of optimized sparse matrix operations with autograd support.
+This package currently consists of the following methods:
+* **[Coalesce](#coalesce)**
+* **[Transpose](#transpose)**
+* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)**
+* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)**
+All included operations work on varying data types and are implemented both for CPU and GPU.
+To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
+Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable.
+## Installation
+### Anaconda
+**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗
+Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
+```
+conda install pytorch-sparse -c pyg
+```
+### Binaries
+We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
+#### PyTorch 2.0
+To install the binaries for PyTorch 2.0.0, simply run
+```
+pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation.
+| | `cpu` | `cu117` | `cu118` |
+|-------------|-------|---------|---------|
+| **Linux** | ✅ | ✅ | ✅ |
+| **Windows** | ✅ | ✅ | ✅ |
+| **macOS** | ✅ | | |
+#### PyTorch 1.13
+To install the binaries for PyTorch 1.13.0, simply run
+```
+pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation.
+| | `cpu` | `cu116` | `cu117` |
+|-------------|-------|---------|---------|
+| **Linux** | ✅ | ✅ | ✅ |
+| **Windows** | ✅ | ✅ | ✅ |
+| **macOS** | ✅ | | |
+**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure).
+For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
+You can look up the latest supported version number [here](https://data.pyg.org/whl).
+### From source
+Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
+```
+$ python -c "import torch; print(torch.__version__)"
+>>> 1.7.0
+$ echo $PATH
+>>> /usr/local/cuda/bin:...
+$ echo $CPATH
+>>> /usr/local/cuda/include:...
+```
+If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file.
+Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`.
+Afterwards, set the environment variable `WITH_METIS=1`.
+Then run:
+```
+pip install torch-scatter torch-sparse
+```
+When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
+In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
+```
+export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX"
+```
+## Functions
+### Coalesce
+```
+torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor)
+```
+Row-wise sorts `index` and removes duplicate entries.
+Duplicate entries are removed by scattering them together.
+For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)
+#### Returns
+* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
+* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import coalesce
+index = torch.tensor([[1, 0, 1, 0, 2, 1],
+ [0, 1, 1, 1, 0, 0]])
+value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
+index, value = coalesce(index, value, m=3, n=2)
+```
+```
+print(index)
+tensor([[0, 1, 1, 2],
+ [1, 0, 1, 0]])
+print(value)
+tensor([[6.0, 8.0],
+ [7.0, 9.0],
+ [3.0, 4.0],
+ [5.0, 6.0]])
+```
+### Transpose
+```
+torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
+```
+Transposes dimensions 0 and 1 of a sparse matrix.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`)
+#### Returns
+* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
+* **value** *(Tensor)* - The transposed value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import transpose
+index = torch.tensor([[1, 0, 1, 0, 2, 1],
+ [0, 1, 1, 1, 0, 0]])
+value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
+index, value = transpose(index, value, 3, 2)
+```
+```
+print(index)
+tensor([[0, 0, 1, 1],
+ [1, 2, 0, 1]])
+print(value)
+tensor([[7.0, 9.0],
+ [5.0, 6.0],
+ [6.0, 8.0],
+ [3.0, 4.0]])
+```
+### Sparse Dense Matrix Multiplication
+```
+torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
+```
+Matrix product of a sparse matrix with a dense matrix.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **matrix** *(Tensor)* - The dense matrix.
+#### Returns
+* **out** *(Tensor)* - The dense output matrix.
+#### Example
+```python
+import torch
+from torch_sparse import spmm
+index = torch.tensor([[0, 0, 1, 2, 2],
+ [0, 2, 1, 0, 1]])
+value = torch.Tensor([1, 2, 4, 1, 3])
+matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
+out = spmm(index, value, 3, 3, matrix)
+```
+```
+print(out)
+tensor([[7.0, 16.0],
+ [8.0, 20.0],
+ [7.0, 19.0]])
+```
+### Sparse Sparse Matrix Multiplication
+```
+torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
+```
+Matrix product of two sparse tensors.
+Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force).
+#### Parameters
+* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
+* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
+* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
+* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
+* **m** *(int)* - The first dimension of first sparse matrix.
+* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix.
+* **n** *(int)* - The second dimension of second sparse matrix.
+* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`)
+#### Returns
+* **index** *(LongTensor)* - The output index tensor of sparse matrix.
+* **value** *(Tensor)* - The output value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import spspmm
+indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
+valueA = torch.Tensor([1, 2, 3, 4, 5])
+indexB = torch.tensor([[0, 2], [1, 0]])
+valueB = torch.Tensor([2, 4])
+indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
+```
+```
+print(indexC)
+tensor([[0, 1, 2],
+ [0, 1, 1]])
+print(valueC)
+tensor([8.0, 6.0, 8.0])
+```
+## Running tests
+```
+pytest
+```
+## C++ API
+`torch-sparse` also offers a C++ API that contains C++ equivalent of python models.
+For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`):
+```
+mkdir build
+cd build
+# Add -DWITH_CUDA=on support for CUDA support
+cmake -DCMAKE_PREFIX_PATH="..." ..
+make
+make install
+```
+
+%package -n python3-torch-sparse
+Summary: PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
+Provides: python-torch-sparse
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-torch-sparse
+This package consists of a small extension library of optimized sparse matrix operations with autograd support.
+This package currently consists of the following methods:
+* **[Coalesce](#coalesce)**
+* **[Transpose](#transpose)**
+* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)**
+* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)**
+All included operations work on varying data types and are implemented both for CPU and GPU.
+To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
+Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable.
+## Installation
+### Anaconda
+**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗
+Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
+```
+conda install pytorch-sparse -c pyg
+```
+### Binaries
+We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
+#### PyTorch 2.0
+To install the binaries for PyTorch 2.0.0, simply run
+```
+pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation.
+| | `cpu` | `cu117` | `cu118` |
+|-------------|-------|---------|---------|
+| **Linux** | ✅ | ✅ | ✅ |
+| **Windows** | ✅ | ✅ | ✅ |
+| **macOS** | ✅ | | |
+#### PyTorch 1.13
+To install the binaries for PyTorch 1.13.0, simply run
+```
+pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation.
+| | `cpu` | `cu116` | `cu117` |
+|-------------|-------|---------|---------|
+| **Linux** | ✅ | ✅ | ✅ |
+| **Windows** | ✅ | ✅ | ✅ |
+| **macOS** | ✅ | | |
+**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure).
+For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
+You can look up the latest supported version number [here](https://data.pyg.org/whl).
+### From source
+Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
+```
+$ python -c "import torch; print(torch.__version__)"
+>>> 1.7.0
+$ echo $PATH
+>>> /usr/local/cuda/bin:...
+$ echo $CPATH
+>>> /usr/local/cuda/include:...
+```
+If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file.
+Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`.
+Afterwards, set the environment variable `WITH_METIS=1`.
+Then run:
+```
+pip install torch-scatter torch-sparse
+```
+When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
+In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
+```
+export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX"
+```
+## Functions
+### Coalesce
+```
+torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor)
+```
+Row-wise sorts `index` and removes duplicate entries.
+Duplicate entries are removed by scattering them together.
+For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)
+#### Returns
+* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
+* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import coalesce
+index = torch.tensor([[1, 0, 1, 0, 2, 1],
+ [0, 1, 1, 1, 0, 0]])
+value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
+index, value = coalesce(index, value, m=3, n=2)
+```
+```
+print(index)
+tensor([[0, 1, 1, 2],
+ [1, 0, 1, 0]])
+print(value)
+tensor([[6.0, 8.0],
+ [7.0, 9.0],
+ [3.0, 4.0],
+ [5.0, 6.0]])
+```
+### Transpose
+```
+torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
+```
+Transposes dimensions 0 and 1 of a sparse matrix.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`)
+#### Returns
+* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
+* **value** *(Tensor)* - The transposed value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import transpose
+index = torch.tensor([[1, 0, 1, 0, 2, 1],
+ [0, 1, 1, 1, 0, 0]])
+value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
+index, value = transpose(index, value, 3, 2)
+```
+```
+print(index)
+tensor([[0, 0, 1, 1],
+ [1, 2, 0, 1]])
+print(value)
+tensor([[7.0, 9.0],
+ [5.0, 6.0],
+ [6.0, 8.0],
+ [3.0, 4.0]])
+```
+### Sparse Dense Matrix Multiplication
+```
+torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
+```
+Matrix product of a sparse matrix with a dense matrix.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **matrix** *(Tensor)* - The dense matrix.
+#### Returns
+* **out** *(Tensor)* - The dense output matrix.
+#### Example
+```python
+import torch
+from torch_sparse import spmm
+index = torch.tensor([[0, 0, 1, 2, 2],
+ [0, 2, 1, 0, 1]])
+value = torch.Tensor([1, 2, 4, 1, 3])
+matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
+out = spmm(index, value, 3, 3, matrix)
+```
+```
+print(out)
+tensor([[7.0, 16.0],
+ [8.0, 20.0],
+ [7.0, 19.0]])
+```
+### Sparse Sparse Matrix Multiplication
+```
+torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
+```
+Matrix product of two sparse tensors.
+Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force).
+#### Parameters
+* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
+* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
+* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
+* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
+* **m** *(int)* - The first dimension of first sparse matrix.
+* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix.
+* **n** *(int)* - The second dimension of second sparse matrix.
+* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`)
+#### Returns
+* **index** *(LongTensor)* - The output index tensor of sparse matrix.
+* **value** *(Tensor)* - The output value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import spspmm
+indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
+valueA = torch.Tensor([1, 2, 3, 4, 5])
+indexB = torch.tensor([[0, 2], [1, 0]])
+valueB = torch.Tensor([2, 4])
+indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
+```
+```
+print(indexC)
+tensor([[0, 1, 2],
+ [0, 1, 1]])
+print(valueC)
+tensor([8.0, 6.0, 8.0])
+```
+## Running tests
+```
+pytest
+```
+## C++ API
+`torch-sparse` also offers a C++ API that contains C++ equivalent of python models.
+For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`):
+```
+mkdir build
+cd build
+# Add -DWITH_CUDA=on support for CUDA support
+cmake -DCMAKE_PREFIX_PATH="..." ..
+make
+make install
+```
+
+%package help
+Summary: Development documents and examples for torch-sparse
+Provides: python3-torch-sparse-doc
+%description help
+This package consists of a small extension library of optimized sparse matrix operations with autograd support.
+This package currently consists of the following methods:
+* **[Coalesce](#coalesce)**
+* **[Transpose](#transpose)**
+* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)**
+* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)**
+All included operations work on varying data types and are implemented both for CPU and GPU.
+To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)).
+Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable.
+## Installation
+### Anaconda
+**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗
+Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
+```
+conda install pytorch-sparse -c pyg
+```
+### Binaries
+We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
+#### PyTorch 2.0
+To install the binaries for PyTorch 2.0.0, simply run
+```
+pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation.
+| | `cpu` | `cu117` | `cu118` |
+|-------------|-------|---------|---------|
+| **Linux** | ✅ | ✅ | ✅ |
+| **Windows** | ✅ | ✅ | ✅ |
+| **macOS** | ✅ | | |
+#### PyTorch 1.13
+To install the binaries for PyTorch 1.13.0, simply run
+```
+pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html
+```
+where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation.
+| | `cpu` | `cu116` | `cu117` |
+|-------------|-------|---------|---------|
+| **Linux** | ✅ | ✅ | ✅ |
+| **Windows** | ✅ | ✅ | ✅ |
+| **macOS** | ✅ | | |
+**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure).
+For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
+You can look up the latest supported version number [here](https://data.pyg.org/whl).
+### From source
+Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
+```
+$ python -c "import torch; print(torch.__version__)"
+>>> 1.7.0
+$ echo $PATH
+>>> /usr/local/cuda/bin:...
+$ echo $CPATH
+>>> /usr/local/cuda/include:...
+```
+If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file.
+Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`.
+Afterwards, set the environment variable `WITH_METIS=1`.
+Then run:
+```
+pip install torch-scatter torch-sparse
+```
+When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
+In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
+```
+export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX"
+```
+## Functions
+### Coalesce
+```
+torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor)
+```
+Row-wise sorts `index` and removes duplicate entries.
+Duplicate entries are removed by scattering them together.
+For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`)
+#### Returns
+* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix.
+* **value** *(Tensor)* - The coalesced value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import coalesce
+index = torch.tensor([[1, 0, 1, 0, 2, 1],
+ [0, 1, 1, 1, 0, 0]])
+value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
+index, value = coalesce(index, value, m=3, n=2)
+```
+```
+print(index)
+tensor([[0, 1, 1, 2],
+ [1, 0, 1, 0]])
+print(value)
+tensor([[6.0, 8.0],
+ [7.0, 9.0],
+ [3.0, 4.0],
+ [5.0, 6.0]])
+```
+### Transpose
+```
+torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor)
+```
+Transposes dimensions 0 and 1 of a sparse matrix.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`)
+#### Returns
+* **index** *(LongTensor)* - The transposed index tensor of sparse matrix.
+* **value** *(Tensor)* - The transposed value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import transpose
+index = torch.tensor([[1, 0, 1, 0, 2, 1],
+ [0, 1, 1, 1, 0, 0]])
+value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]])
+index, value = transpose(index, value, 3, 2)
+```
+```
+print(index)
+tensor([[0, 0, 1, 1],
+ [1, 2, 0, 1]])
+print(value)
+tensor([[7.0, 9.0],
+ [5.0, 6.0],
+ [6.0, 8.0],
+ [3.0, 4.0]])
+```
+### Sparse Dense Matrix Multiplication
+```
+torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor
+```
+Matrix product of a sparse matrix with a dense matrix.
+#### Parameters
+* **index** *(LongTensor)* - The index tensor of sparse matrix.
+* **value** *(Tensor)* - The value tensor of sparse matrix.
+* **m** *(int)* - The first dimension of sparse matrix.
+* **n** *(int)* - The second dimension of sparse matrix.
+* **matrix** *(Tensor)* - The dense matrix.
+#### Returns
+* **out** *(Tensor)* - The dense output matrix.
+#### Example
+```python
+import torch
+from torch_sparse import spmm
+index = torch.tensor([[0, 0, 1, 2, 2],
+ [0, 2, 1, 0, 1]])
+value = torch.Tensor([1, 2, 4, 1, 3])
+matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]])
+out = spmm(index, value, 3, 3, matrix)
+```
+```
+print(out)
+tensor([[7.0, 16.0],
+ [8.0, 20.0],
+ [7.0, 19.0]])
+```
+### Sparse Sparse Matrix Multiplication
+```
+torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor)
+```
+Matrix product of two sparse tensors.
+Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force).
+#### Parameters
+* **indexA** *(LongTensor)* - The index tensor of first sparse matrix.
+* **valueA** *(Tensor)* - The value tensor of first sparse matrix.
+* **indexB** *(LongTensor)* - The index tensor of second sparse matrix.
+* **valueB** *(Tensor)* - The value tensor of second sparse matrix.
+* **m** *(int)* - The first dimension of first sparse matrix.
+* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix.
+* **n** *(int)* - The second dimension of second sparse matrix.
+* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`)
+#### Returns
+* **index** *(LongTensor)* - The output index tensor of sparse matrix.
+* **value** *(Tensor)* - The output value tensor of sparse matrix.
+#### Example
+```python
+import torch
+from torch_sparse import spspmm
+indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]])
+valueA = torch.Tensor([1, 2, 3, 4, 5])
+indexB = torch.tensor([[0, 2], [1, 0]])
+valueB = torch.Tensor([2, 4])
+indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2)
+```
+```
+print(indexC)
+tensor([[0, 1, 2],
+ [0, 1, 1]])
+print(valueC)
+tensor([8.0, 6.0, 8.0])
+```
+## Running tests
+```
+pytest
+```
+## C++ API
+`torch-sparse` also offers a C++ API that contains C++ equivalent of python models.
+For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`):
+```
+mkdir build
+cd build
+# Add -DWITH_CUDA=on support for CUDA support
+cmake -DCMAKE_PREFIX_PATH="..." ..
+make
+make install
+```
+
+%prep
+%autosetup -n torch-sparse-0.6.17
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-torch-sparse -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.17-1
+- Package Spec generated