diff options
Diffstat (limited to 'python-torch-sparse.spec')
| -rw-r--r-- | python-torch-sparse.spec | 708 |
1 files changed, 708 insertions, 0 deletions
diff --git a/python-torch-sparse.spec b/python-torch-sparse.spec new file mode 100644 index 0000000..fad2b1d --- /dev/null +++ b/python-torch-sparse.spec @@ -0,0 +1,708 @@ +%global _empty_manifest_terminate_build 0 +Name: python-torch-sparse +Version: 0.6.17 +Release: 1 +Summary: PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations +License: MIT License +URL: https://github.com/rusty1s/pytorch_sparse +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cb/ff/21d4674bdf232cd7a2bdbbbb04c35ba1cbdf444d4f3331f5d7eb6c5d4a8f/torch_sparse-0.6.17.tar.gz +BuildArch: noarch + + +%description +This package consists of a small extension library of optimized sparse matrix operations with autograd support. +This package currently consists of the following methods: +* **[Coalesce](#coalesce)** +* **[Transpose](#transpose)** +* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)** +* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)** +All included operations work on varying data types and are implemented both for CPU and GPU. +To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)). +Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable. +## Installation +### Anaconda +**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗 +Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run +``` +conda install pytorch-sparse -c pyg +``` +### Binaries +We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). +#### PyTorch 2.0 +To install the binaries for PyTorch 2.0.0, simply run +``` +pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation. +| | `cpu` | `cu117` | `cu118` | +|-------------|-------|---------|---------| +| **Linux** | ✅ | ✅ | ✅ | +| **Windows** | ✅ | ✅ | ✅ | +| **macOS** | ✅ | | | +#### PyTorch 1.13 +To install the binaries for PyTorch 1.13.0, simply run +``` +pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation. +| | `cpu` | `cu116` | `cu117` | +|-------------|-------|---------|---------| +| **Linux** | ✅ | ✅ | ✅ | +| **Windows** | ✅ | ✅ | ✅ | +| **macOS** | ✅ | | | +**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). +For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source. +You can look up the latest supported version number [here](https://data.pyg.org/whl). +### From source +Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: +``` +$ python -c "import torch; print(torch.__version__)" +>>> 1.7.0 +$ echo $PATH +>>> /usr/local/cuda/bin:... +$ echo $CPATH +>>> /usr/local/cuda/include:... +``` +If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file. +Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`. +Afterwards, set the environment variable `WITH_METIS=1`. +Then run: +``` +pip install torch-scatter torch-sparse +``` +When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. +In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: +``` +export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX" +``` +## Functions +### Coalesce +``` +torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor) +``` +Row-wise sorts `index` and removes duplicate entries. +Duplicate entries are removed by scattering them together. +For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`) +#### Returns +* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix. +* **value** *(Tensor)* - The coalesced value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import coalesce +index = torch.tensor([[1, 0, 1, 0, 2, 1], + [0, 1, 1, 1, 0, 0]]) +value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) +index, value = coalesce(index, value, m=3, n=2) +``` +``` +print(index) +tensor([[0, 1, 1, 2], + [1, 0, 1, 0]]) +print(value) +tensor([[6.0, 8.0], + [7.0, 9.0], + [3.0, 4.0], + [5.0, 6.0]]) +``` +### Transpose +``` +torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor) +``` +Transposes dimensions 0 and 1 of a sparse matrix. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`) +#### Returns +* **index** *(LongTensor)* - The transposed index tensor of sparse matrix. +* **value** *(Tensor)* - The transposed value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import transpose +index = torch.tensor([[1, 0, 1, 0, 2, 1], + [0, 1, 1, 1, 0, 0]]) +value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) +index, value = transpose(index, value, 3, 2) +``` +``` +print(index) +tensor([[0, 0, 1, 1], + [1, 2, 0, 1]]) +print(value) +tensor([[7.0, 9.0], + [5.0, 6.0], + [6.0, 8.0], + [3.0, 4.0]]) +``` +### Sparse Dense Matrix Multiplication +``` +torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor +``` +Matrix product of a sparse matrix with a dense matrix. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **matrix** *(Tensor)* - The dense matrix. +#### Returns +* **out** *(Tensor)* - The dense output matrix. +#### Example +```python +import torch +from torch_sparse import spmm +index = torch.tensor([[0, 0, 1, 2, 2], + [0, 2, 1, 0, 1]]) +value = torch.Tensor([1, 2, 4, 1, 3]) +matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]]) +out = spmm(index, value, 3, 3, matrix) +``` +``` +print(out) +tensor([[7.0, 16.0], + [8.0, 20.0], + [7.0, 19.0]]) +``` +### Sparse Sparse Matrix Multiplication +``` +torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor) +``` +Matrix product of two sparse tensors. +Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force). +#### Parameters +* **indexA** *(LongTensor)* - The index tensor of first sparse matrix. +* **valueA** *(Tensor)* - The value tensor of first sparse matrix. +* **indexB** *(LongTensor)* - The index tensor of second sparse matrix. +* **valueB** *(Tensor)* - The value tensor of second sparse matrix. +* **m** *(int)* - The first dimension of first sparse matrix. +* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix. +* **n** *(int)* - The second dimension of second sparse matrix. +* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`) +#### Returns +* **index** *(LongTensor)* - The output index tensor of sparse matrix. +* **value** *(Tensor)* - The output value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import spspmm +indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]]) +valueA = torch.Tensor([1, 2, 3, 4, 5]) +indexB = torch.tensor([[0, 2], [1, 0]]) +valueB = torch.Tensor([2, 4]) +indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2) +``` +``` +print(indexC) +tensor([[0, 1, 2], + [0, 1, 1]]) +print(valueC) +tensor([8.0, 6.0, 8.0]) +``` +## Running tests +``` +pytest +``` +## C++ API +`torch-sparse` also offers a C++ API that contains C++ equivalent of python models. +For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`): +``` +mkdir build +cd build +# Add -DWITH_CUDA=on support for CUDA support +cmake -DCMAKE_PREFIX_PATH="..." .. +make +make install +``` + +%package -n python3-torch-sparse +Summary: PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations +Provides: python-torch-sparse +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-torch-sparse +This package consists of a small extension library of optimized sparse matrix operations with autograd support. +This package currently consists of the following methods: +* **[Coalesce](#coalesce)** +* **[Transpose](#transpose)** +* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)** +* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)** +All included operations work on varying data types and are implemented both for CPU and GPU. +To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)). +Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable. +## Installation +### Anaconda +**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗 +Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run +``` +conda install pytorch-sparse -c pyg +``` +### Binaries +We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). +#### PyTorch 2.0 +To install the binaries for PyTorch 2.0.0, simply run +``` +pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation. +| | `cpu` | `cu117` | `cu118` | +|-------------|-------|---------|---------| +| **Linux** | ✅ | ✅ | ✅ | +| **Windows** | ✅ | ✅ | ✅ | +| **macOS** | ✅ | | | +#### PyTorch 1.13 +To install the binaries for PyTorch 1.13.0, simply run +``` +pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation. +| | `cpu` | `cu116` | `cu117` | +|-------------|-------|---------|---------| +| **Linux** | ✅ | ✅ | ✅ | +| **Windows** | ✅ | ✅ | ✅ | +| **macOS** | ✅ | | | +**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). +For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source. +You can look up the latest supported version number [here](https://data.pyg.org/whl). +### From source +Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: +``` +$ python -c "import torch; print(torch.__version__)" +>>> 1.7.0 +$ echo $PATH +>>> /usr/local/cuda/bin:... +$ echo $CPATH +>>> /usr/local/cuda/include:... +``` +If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file. +Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`. +Afterwards, set the environment variable `WITH_METIS=1`. +Then run: +``` +pip install torch-scatter torch-sparse +``` +When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. +In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: +``` +export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX" +``` +## Functions +### Coalesce +``` +torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor) +``` +Row-wise sorts `index` and removes duplicate entries. +Duplicate entries are removed by scattering them together. +For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`) +#### Returns +* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix. +* **value** *(Tensor)* - The coalesced value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import coalesce +index = torch.tensor([[1, 0, 1, 0, 2, 1], + [0, 1, 1, 1, 0, 0]]) +value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) +index, value = coalesce(index, value, m=3, n=2) +``` +``` +print(index) +tensor([[0, 1, 1, 2], + [1, 0, 1, 0]]) +print(value) +tensor([[6.0, 8.0], + [7.0, 9.0], + [3.0, 4.0], + [5.0, 6.0]]) +``` +### Transpose +``` +torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor) +``` +Transposes dimensions 0 and 1 of a sparse matrix. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`) +#### Returns +* **index** *(LongTensor)* - The transposed index tensor of sparse matrix. +* **value** *(Tensor)* - The transposed value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import transpose +index = torch.tensor([[1, 0, 1, 0, 2, 1], + [0, 1, 1, 1, 0, 0]]) +value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) +index, value = transpose(index, value, 3, 2) +``` +``` +print(index) +tensor([[0, 0, 1, 1], + [1, 2, 0, 1]]) +print(value) +tensor([[7.0, 9.0], + [5.0, 6.0], + [6.0, 8.0], + [3.0, 4.0]]) +``` +### Sparse Dense Matrix Multiplication +``` +torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor +``` +Matrix product of a sparse matrix with a dense matrix. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **matrix** *(Tensor)* - The dense matrix. +#### Returns +* **out** *(Tensor)* - The dense output matrix. +#### Example +```python +import torch +from torch_sparse import spmm +index = torch.tensor([[0, 0, 1, 2, 2], + [0, 2, 1, 0, 1]]) +value = torch.Tensor([1, 2, 4, 1, 3]) +matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]]) +out = spmm(index, value, 3, 3, matrix) +``` +``` +print(out) +tensor([[7.0, 16.0], + [8.0, 20.0], + [7.0, 19.0]]) +``` +### Sparse Sparse Matrix Multiplication +``` +torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor) +``` +Matrix product of two sparse tensors. +Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force). +#### Parameters +* **indexA** *(LongTensor)* - The index tensor of first sparse matrix. +* **valueA** *(Tensor)* - The value tensor of first sparse matrix. +* **indexB** *(LongTensor)* - The index tensor of second sparse matrix. +* **valueB** *(Tensor)* - The value tensor of second sparse matrix. +* **m** *(int)* - The first dimension of first sparse matrix. +* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix. +* **n** *(int)* - The second dimension of second sparse matrix. +* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`) +#### Returns +* **index** *(LongTensor)* - The output index tensor of sparse matrix. +* **value** *(Tensor)* - The output value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import spspmm +indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]]) +valueA = torch.Tensor([1, 2, 3, 4, 5]) +indexB = torch.tensor([[0, 2], [1, 0]]) +valueB = torch.Tensor([2, 4]) +indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2) +``` +``` +print(indexC) +tensor([[0, 1, 2], + [0, 1, 1]]) +print(valueC) +tensor([8.0, 6.0, 8.0]) +``` +## Running tests +``` +pytest +``` +## C++ API +`torch-sparse` also offers a C++ API that contains C++ equivalent of python models. +For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`): +``` +mkdir build +cd build +# Add -DWITH_CUDA=on support for CUDA support +cmake -DCMAKE_PREFIX_PATH="..." .. +make +make install +``` + +%package help +Summary: Development documents and examples for torch-sparse +Provides: python3-torch-sparse-doc +%description help +This package consists of a small extension library of optimized sparse matrix operations with autograd support. +This package currently consists of the following methods: +* **[Coalesce](#coalesce)** +* **[Transpose](#transpose)** +* **[Sparse Dense Matrix Multiplication](#sparse-dense-matrix-multiplication)** +* **[Sparse Sparse Matrix Multiplication](#sparse-sparse-matrix-multiplication)** +All included operations work on varying data types and are implemented both for CPU and GPU. +To avoid the hazzle of creating [`torch.sparse_coo_tensor`](https://pytorch.org/docs/stable/torch.html?highlight=sparse_coo_tensor#torch.sparse_coo_tensor), this package defines operations on sparse tensors by simply passing `index` and `value` tensors as arguments ([with same shapes as defined in PyTorch](https://pytorch.org/docs/stable/sparse.html)). +Note that only `value` comes with autograd support, as `index` is discrete and therefore not differentiable. +## Installation +### Anaconda +**Update:** You can now install `pytorch-sparse` via [Anaconda](https://anaconda.org/pyg/pytorch-sparse) for all major OS/PyTorch/CUDA combinations 🤗 +Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run +``` +conda install pytorch-sparse -c pyg +``` +### Binaries +We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl). +#### PyTorch 2.0 +To install the binaries for PyTorch 2.0.0, simply run +``` +pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu117`, or `cu118` depending on your PyTorch installation. +| | `cpu` | `cu117` | `cu118` | +|-------------|-------|---------|---------| +| **Linux** | ✅ | ✅ | ✅ | +| **Windows** | ✅ | ✅ | ✅ | +| **macOS** | ✅ | | | +#### PyTorch 1.13 +To install the binaries for PyTorch 1.13.0, simply run +``` +pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+${CUDA}.html +``` +where `${CUDA}` should be replaced by either `cpu`, `cu116`, or `cu117` depending on your PyTorch installation. +| | `cpu` | `cu116` | `cu117` | +|-------------|-------|---------|---------| +| **Linux** | ✅ | ✅ | ✅ | +| **Windows** | ✅ | ✅ | ✅ | +| **macOS** | ✅ | | | +**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0 and PyTorch 1.12.0/1.12.1 (following the same procedure). +For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source. +You can look up the latest supported version number [here](https://data.pyg.org/whl). +### From source +Ensure that at least PyTorch 1.7.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*: +``` +$ python -c "import torch; print(torch.__version__)" +>>> 1.7.0 +$ echo $PATH +>>> /usr/local/cuda/bin:... +$ echo $CPATH +>>> /usr/local/cuda/include:... +``` +If you want to additionally build `torch-sparse` with METIS support, *e.g.* for partioning, please download and install the [METIS library](https://web.archive.org/web/20211119110155/http://glaros.dtc.umn.edu/gkhome/metis/metis/download) by following the instructions in the `Install.txt` file. +Note that METIS needs to be installed with 64 bit `IDXTYPEWIDTH` by changing `include/metis.h`. +Afterwards, set the environment variable `WITH_METIS=1`. +Then run: +``` +pip install torch-scatter torch-sparse +``` +When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail. +In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*: +``` +export TORCH_CUDA_ARCH_LIST="6.0 6.1 7.2+PTX 7.5+PTX" +``` +## Functions +### Coalesce +``` +torch_sparse.coalesce(index, value, m, n, op="add") -> (torch.LongTensor, torch.Tensor) +``` +Row-wise sorts `index` and removes duplicate entries. +Duplicate entries are removed by scattering them together. +For scattering, any operation of [`torch_scatter`](https://github.com/rusty1s/pytorch_scatter) can be used. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **op** *(string, optional)* - The scatter operation to use. (default: `"add"`) +#### Returns +* **index** *(LongTensor)* - The coalesced index tensor of sparse matrix. +* **value** *(Tensor)* - The coalesced value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import coalesce +index = torch.tensor([[1, 0, 1, 0, 2, 1], + [0, 1, 1, 1, 0, 0]]) +value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) +index, value = coalesce(index, value, m=3, n=2) +``` +``` +print(index) +tensor([[0, 1, 1, 2], + [1, 0, 1, 0]]) +print(value) +tensor([[6.0, 8.0], + [7.0, 9.0], + [3.0, 4.0], + [5.0, 6.0]]) +``` +### Transpose +``` +torch_sparse.transpose(index, value, m, n) -> (torch.LongTensor, torch.Tensor) +``` +Transposes dimensions 0 and 1 of a sparse matrix. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **coalesced** *(bool, optional)* - If set to `False`, will not coalesce the output. (default: `True`) +#### Returns +* **index** *(LongTensor)* - The transposed index tensor of sparse matrix. +* **value** *(Tensor)* - The transposed value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import transpose +index = torch.tensor([[1, 0, 1, 0, 2, 1], + [0, 1, 1, 1, 0, 0]]) +value = torch.Tensor([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]]) +index, value = transpose(index, value, 3, 2) +``` +``` +print(index) +tensor([[0, 0, 1, 1], + [1, 2, 0, 1]]) +print(value) +tensor([[7.0, 9.0], + [5.0, 6.0], + [6.0, 8.0], + [3.0, 4.0]]) +``` +### Sparse Dense Matrix Multiplication +``` +torch_sparse.spmm(index, value, m, n, matrix) -> torch.Tensor +``` +Matrix product of a sparse matrix with a dense matrix. +#### Parameters +* **index** *(LongTensor)* - The index tensor of sparse matrix. +* **value** *(Tensor)* - The value tensor of sparse matrix. +* **m** *(int)* - The first dimension of sparse matrix. +* **n** *(int)* - The second dimension of sparse matrix. +* **matrix** *(Tensor)* - The dense matrix. +#### Returns +* **out** *(Tensor)* - The dense output matrix. +#### Example +```python +import torch +from torch_sparse import spmm +index = torch.tensor([[0, 0, 1, 2, 2], + [0, 2, 1, 0, 1]]) +value = torch.Tensor([1, 2, 4, 1, 3]) +matrix = torch.Tensor([[1, 4], [2, 5], [3, 6]]) +out = spmm(index, value, 3, 3, matrix) +``` +``` +print(out) +tensor([[7.0, 16.0], + [8.0, 20.0], + [7.0, 19.0]]) +``` +### Sparse Sparse Matrix Multiplication +``` +torch_sparse.spspmm(indexA, valueA, indexB, valueB, m, k, n) -> (torch.LongTensor, torch.Tensor) +``` +Matrix product of two sparse tensors. +Both input sparse matrices need to be **coalesced** (use the `coalesced` attribute to force). +#### Parameters +* **indexA** *(LongTensor)* - The index tensor of first sparse matrix. +* **valueA** *(Tensor)* - The value tensor of first sparse matrix. +* **indexB** *(LongTensor)* - The index tensor of second sparse matrix. +* **valueB** *(Tensor)* - The value tensor of second sparse matrix. +* **m** *(int)* - The first dimension of first sparse matrix. +* **k** *(int)* - The second dimension of first sparse matrix and first dimension of second sparse matrix. +* **n** *(int)* - The second dimension of second sparse matrix. +* **coalesced** *(bool, optional)*: If set to `True`, will coalesce both input sparse matrices. (default: `False`) +#### Returns +* **index** *(LongTensor)* - The output index tensor of sparse matrix. +* **value** *(Tensor)* - The output value tensor of sparse matrix. +#### Example +```python +import torch +from torch_sparse import spspmm +indexA = torch.tensor([[0, 0, 1, 2, 2], [1, 2, 0, 0, 1]]) +valueA = torch.Tensor([1, 2, 3, 4, 5]) +indexB = torch.tensor([[0, 2], [1, 0]]) +valueB = torch.Tensor([2, 4]) +indexC, valueC = spspmm(indexA, valueA, indexB, valueB, 3, 3, 2) +``` +``` +print(indexC) +tensor([[0, 1, 2], + [0, 1, 1]]) +print(valueC) +tensor([8.0, 6.0, 8.0]) +``` +## Running tests +``` +pytest +``` +## C++ API +`torch-sparse` also offers a C++ API that contains C++ equivalent of python models. +For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`): +``` +mkdir build +cd build +# Add -DWITH_CUDA=on support for CUDA support +cmake -DCMAKE_PREFIX_PATH="..." .. +make +make install +``` + +%prep +%autosetup -n torch-sparse-0.6.17 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-torch-sparse -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.17-1 +- Package Spec generated |
