1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
%global _empty_manifest_terminate_build 0
Name: python-torch-stft
Version: 0.1.4
Release: 1
Summary: An STFT/iSTFT for PyTorch
License: BSD License
URL: https://github.com/pseeth/torch-stft
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c3/bd/ea6bc20ccaf1008c62c3b235eeb76649190e155ad43c0a06ed6bda2afd5f/torch_stft-0.1.4.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-librosa
%description
[](https://travis-ci.com/pseeth/pytorch-stft)
# STFT/iSTFT in PyTorch
An STFT/iSTFT written up in PyTorch using 1D Convolutions. Requirements are a recent version PyTorch, numpy, and librosa (for loading audio in test_stft.py). Thanks to Shrikant Venkataramani for sharing code this was based off of and Rafael Valle for catching bugs and adding the proper windowing logic. Uses Python 3.
## Installation
Install easily with pip:
```
pip install torch_stft
```
## Usage
```
import torch
from torch_stft import STFT
import numpy as np
import librosa
import matplotlib.pyplot as plt
audio = librosa.load(librosa.util.example_audio_file(), duration=10.0, offset=30)[0]
device = 'cpu'
filter_length = 1024
hop_length = 256
win_length = 1024 # doesn't need to be specified. if not specified, it's the same as filter_length
window = 'hann'
audio = torch.FloatTensor(audio)
audio = audio.unsqueeze(0)
audio = audio.to(device)
stft = STFT(
filter_length=filter_length,
hop_length=hop_length,
win_length=win_length,
window=window
).to(device)
magnitude, phase = stft.transform(audio)
output = stft.inverse(magnitude, phase)
output = output.cpu().data.numpy()[..., :]
audio = audio.cpu().data.numpy()[..., :]
print(np.mean((output - audio) ** 2)) # on order of 1e-16
```
Output of [`compare_stft.py`](compare_stft.py):

## Tests
Test it by just cloning this repo and running
```
pip install -r requirements.txt
python -m pytest .
```
Unfortunately, since it's implemented with 1D Convolutions, some filter_length/hop_length
combinations can result in out of memory errors on your GPU when run on sufficiently large input.
## Contributing
Pull requests welcome.
%package -n python3-torch-stft
Summary: An STFT/iSTFT for PyTorch
Provides: python-torch-stft
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-torch-stft
[](https://travis-ci.com/pseeth/pytorch-stft)
# STFT/iSTFT in PyTorch
An STFT/iSTFT written up in PyTorch using 1D Convolutions. Requirements are a recent version PyTorch, numpy, and librosa (for loading audio in test_stft.py). Thanks to Shrikant Venkataramani for sharing code this was based off of and Rafael Valle for catching bugs and adding the proper windowing logic. Uses Python 3.
## Installation
Install easily with pip:
```
pip install torch_stft
```
## Usage
```
import torch
from torch_stft import STFT
import numpy as np
import librosa
import matplotlib.pyplot as plt
audio = librosa.load(librosa.util.example_audio_file(), duration=10.0, offset=30)[0]
device = 'cpu'
filter_length = 1024
hop_length = 256
win_length = 1024 # doesn't need to be specified. if not specified, it's the same as filter_length
window = 'hann'
audio = torch.FloatTensor(audio)
audio = audio.unsqueeze(0)
audio = audio.to(device)
stft = STFT(
filter_length=filter_length,
hop_length=hop_length,
win_length=win_length,
window=window
).to(device)
magnitude, phase = stft.transform(audio)
output = stft.inverse(magnitude, phase)
output = output.cpu().data.numpy()[..., :]
audio = audio.cpu().data.numpy()[..., :]
print(np.mean((output - audio) ** 2)) # on order of 1e-16
```
Output of [`compare_stft.py`](compare_stft.py):

## Tests
Test it by just cloning this repo and running
```
pip install -r requirements.txt
python -m pytest .
```
Unfortunately, since it's implemented with 1D Convolutions, some filter_length/hop_length
combinations can result in out of memory errors on your GPU when run on sufficiently large input.
## Contributing
Pull requests welcome.
%package help
Summary: Development documents and examples for torch-stft
Provides: python3-torch-stft-doc
%description help
[](https://travis-ci.com/pseeth/pytorch-stft)
# STFT/iSTFT in PyTorch
An STFT/iSTFT written up in PyTorch using 1D Convolutions. Requirements are a recent version PyTorch, numpy, and librosa (for loading audio in test_stft.py). Thanks to Shrikant Venkataramani for sharing code this was based off of and Rafael Valle for catching bugs and adding the proper windowing logic. Uses Python 3.
## Installation
Install easily with pip:
```
pip install torch_stft
```
## Usage
```
import torch
from torch_stft import STFT
import numpy as np
import librosa
import matplotlib.pyplot as plt
audio = librosa.load(librosa.util.example_audio_file(), duration=10.0, offset=30)[0]
device = 'cpu'
filter_length = 1024
hop_length = 256
win_length = 1024 # doesn't need to be specified. if not specified, it's the same as filter_length
window = 'hann'
audio = torch.FloatTensor(audio)
audio = audio.unsqueeze(0)
audio = audio.to(device)
stft = STFT(
filter_length=filter_length,
hop_length=hop_length,
win_length=win_length,
window=window
).to(device)
magnitude, phase = stft.transform(audio)
output = stft.inverse(magnitude, phase)
output = output.cpu().data.numpy()[..., :]
audio = audio.cpu().data.numpy()[..., :]
print(np.mean((output - audio) ** 2)) # on order of 1e-16
```
Output of [`compare_stft.py`](compare_stft.py):

## Tests
Test it by just cloning this repo and running
```
pip install -r requirements.txt
python -m pytest .
```
Unfortunately, since it's implemented with 1D Convolutions, some filter_length/hop_length
combinations can result in out of memory errors on your GPU when run on sufficiently large input.
## Contributing
Pull requests welcome.
%prep
%autosetup -n torch-stft-0.1.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-torch-stft -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.4-1
- Package Spec generated
|