1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
%global _empty_manifest_terminate_build 0
Name: python-torch-stoi
Version: 0.1.2
Release: 1
Summary: Computes Short Term Objective Intelligibility in PyTorch
License: MIT
URL: https://github.com/mpariente/pytorch_stoi
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4a/bb/0a3122124f18d1091274af1fe59bc77218143f4fc35fa48914e89a7431e9/torch_stoi-0.1.2.tar.gz
BuildArch: noarch
%description
## PyTorch implementation of STOI
[![Build Status][travis-badge]][travis]
[](https://badge.fury.io/py/torch-stoi)
Implementation of the classical and extended Short
Term Objective Intelligibility in PyTorch.
See also [Cees Taal's website](http://www.ceestaal.nl/code/) and
the [python implementation](https://github.com/mpariente/pystoi)
### Install
```bash
pip install torch_stoi
```
## Important warning
**This implementation is intended to be used as a loss function only.**
It doesn't replicate the exact behavior of the original metrics
but the results should be close enough that it can be used
as a loss function. See the Notes in the
[`NegSTOILoss`](./torch_stoi/stoi.py) class.
Quantitative comparison coming soon hopefully :rocket:
### Usage
```python
import torch
from torch import nn
from torch_stoi import NegSTOILoss
sample_rate = 16000
loss_func = NegSTOILoss(sample_rate=sample_rate)
# Your nnet and optimizer definition here
nnet = nn.Module()
noisy_speech = torch.randn(2, 16000)
clean_speech = torch.randn(2, 16000)
# Estimate clean speech
est_speech = nnet(noisy_speech)
# Compute loss and backward (then step etc...)
loss_batch = loss_func(est_speech, clean_speech)
loss_batch.mean().backward()
```
### Comparing NumPy and PyTorch versions : the static test
Values obtained with the NumPy version are compared to
the PyTorch version in the following graphs.
##### 8kHz
Classic STOI measure
<img src="./plots/8kHzwithVAD.png" width="400"/> <img src="./plots/8kHzwoVAD.png" width="400"/>
Extended STOI measure
<img src="./plots/8kHzExtendedwithVAD.png" width="400"/> <img src="./plots/8kHzExtendedwoVAD.png" width="400">
##### 16kHz
Classic STOI measure
<img src="./plots/16kHzwithVAD.png" width="400"> <img src="./plots/16kHzwoVAD.png" width="400">
Extended STOI measure
<img src="./plots/16kHzExtendedwithVAD.png" width="400"> <img src="./plots/16kHzExtendedwoVAD.png" width="400">
16kHz signals used to compare both versions contained a lot
of silence, which explains why the match is very bad without
VAD.
### Comparing NumPy and PyTorch versions : Training a DNN
Coming in the near future
### References
* [1] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'A Short-Time
Objective Intelligibility Measure for Time-Frequency Weighted Noisy Speech',
ICASSP 2010, Texas, Dallas.
* [2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'An Algorithm for
Intelligibility Prediction of Time-Frequency Weighted Noisy Speech',
IEEE Transactions on Audio, Speech, and Language Processing, 2011.
* [3] J. Jensen and C. H. Taal, 'An Algorithm for Predicting the
Intelligibility of Speech Masked by Modulated Noise Maskers',
IEEE Transactions on Audio, Speech and Language Processing, 2016.
[travis]: https://travis-ci.com/mpariente/pytorch_stoi
[travis-badge]: https://travis-ci.com/mpariente/pytorch_stoi.svg?branch=master
%package -n python3-torch-stoi
Summary: Computes Short Term Objective Intelligibility in PyTorch
Provides: python-torch-stoi
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-torch-stoi
## PyTorch implementation of STOI
[![Build Status][travis-badge]][travis]
[](https://badge.fury.io/py/torch-stoi)
Implementation of the classical and extended Short
Term Objective Intelligibility in PyTorch.
See also [Cees Taal's website](http://www.ceestaal.nl/code/) and
the [python implementation](https://github.com/mpariente/pystoi)
### Install
```bash
pip install torch_stoi
```
## Important warning
**This implementation is intended to be used as a loss function only.**
It doesn't replicate the exact behavior of the original metrics
but the results should be close enough that it can be used
as a loss function. See the Notes in the
[`NegSTOILoss`](./torch_stoi/stoi.py) class.
Quantitative comparison coming soon hopefully :rocket:
### Usage
```python
import torch
from torch import nn
from torch_stoi import NegSTOILoss
sample_rate = 16000
loss_func = NegSTOILoss(sample_rate=sample_rate)
# Your nnet and optimizer definition here
nnet = nn.Module()
noisy_speech = torch.randn(2, 16000)
clean_speech = torch.randn(2, 16000)
# Estimate clean speech
est_speech = nnet(noisy_speech)
# Compute loss and backward (then step etc...)
loss_batch = loss_func(est_speech, clean_speech)
loss_batch.mean().backward()
```
### Comparing NumPy and PyTorch versions : the static test
Values obtained with the NumPy version are compared to
the PyTorch version in the following graphs.
##### 8kHz
Classic STOI measure
<img src="./plots/8kHzwithVAD.png" width="400"/> <img src="./plots/8kHzwoVAD.png" width="400"/>
Extended STOI measure
<img src="./plots/8kHzExtendedwithVAD.png" width="400"/> <img src="./plots/8kHzExtendedwoVAD.png" width="400">
##### 16kHz
Classic STOI measure
<img src="./plots/16kHzwithVAD.png" width="400"> <img src="./plots/16kHzwoVAD.png" width="400">
Extended STOI measure
<img src="./plots/16kHzExtendedwithVAD.png" width="400"> <img src="./plots/16kHzExtendedwoVAD.png" width="400">
16kHz signals used to compare both versions contained a lot
of silence, which explains why the match is very bad without
VAD.
### Comparing NumPy and PyTorch versions : Training a DNN
Coming in the near future
### References
* [1] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'A Short-Time
Objective Intelligibility Measure for Time-Frequency Weighted Noisy Speech',
ICASSP 2010, Texas, Dallas.
* [2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'An Algorithm for
Intelligibility Prediction of Time-Frequency Weighted Noisy Speech',
IEEE Transactions on Audio, Speech, and Language Processing, 2011.
* [3] J. Jensen and C. H. Taal, 'An Algorithm for Predicting the
Intelligibility of Speech Masked by Modulated Noise Maskers',
IEEE Transactions on Audio, Speech and Language Processing, 2016.
[travis]: https://travis-ci.com/mpariente/pytorch_stoi
[travis-badge]: https://travis-ci.com/mpariente/pytorch_stoi.svg?branch=master
%package help
Summary: Development documents and examples for torch-stoi
Provides: python3-torch-stoi-doc
%description help
## PyTorch implementation of STOI
[![Build Status][travis-badge]][travis]
[](https://badge.fury.io/py/torch-stoi)
Implementation of the classical and extended Short
Term Objective Intelligibility in PyTorch.
See also [Cees Taal's website](http://www.ceestaal.nl/code/) and
the [python implementation](https://github.com/mpariente/pystoi)
### Install
```bash
pip install torch_stoi
```
## Important warning
**This implementation is intended to be used as a loss function only.**
It doesn't replicate the exact behavior of the original metrics
but the results should be close enough that it can be used
as a loss function. See the Notes in the
[`NegSTOILoss`](./torch_stoi/stoi.py) class.
Quantitative comparison coming soon hopefully :rocket:
### Usage
```python
import torch
from torch import nn
from torch_stoi import NegSTOILoss
sample_rate = 16000
loss_func = NegSTOILoss(sample_rate=sample_rate)
# Your nnet and optimizer definition here
nnet = nn.Module()
noisy_speech = torch.randn(2, 16000)
clean_speech = torch.randn(2, 16000)
# Estimate clean speech
est_speech = nnet(noisy_speech)
# Compute loss and backward (then step etc...)
loss_batch = loss_func(est_speech, clean_speech)
loss_batch.mean().backward()
```
### Comparing NumPy and PyTorch versions : the static test
Values obtained with the NumPy version are compared to
the PyTorch version in the following graphs.
##### 8kHz
Classic STOI measure
<img src="./plots/8kHzwithVAD.png" width="400"/> <img src="./plots/8kHzwoVAD.png" width="400"/>
Extended STOI measure
<img src="./plots/8kHzExtendedwithVAD.png" width="400"/> <img src="./plots/8kHzExtendedwoVAD.png" width="400">
##### 16kHz
Classic STOI measure
<img src="./plots/16kHzwithVAD.png" width="400"> <img src="./plots/16kHzwoVAD.png" width="400">
Extended STOI measure
<img src="./plots/16kHzExtendedwithVAD.png" width="400"> <img src="./plots/16kHzExtendedwoVAD.png" width="400">
16kHz signals used to compare both versions contained a lot
of silence, which explains why the match is very bad without
VAD.
### Comparing NumPy and PyTorch versions : Training a DNN
Coming in the near future
### References
* [1] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'A Short-Time
Objective Intelligibility Measure for Time-Frequency Weighted Noisy Speech',
ICASSP 2010, Texas, Dallas.
* [2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen 'An Algorithm for
Intelligibility Prediction of Time-Frequency Weighted Noisy Speech',
IEEE Transactions on Audio, Speech, and Language Processing, 2011.
* [3] J. Jensen and C. H. Taal, 'An Algorithm for Predicting the
Intelligibility of Speech Masked by Modulated Noise Maskers',
IEEE Transactions on Audio, Speech and Language Processing, 2016.
[travis]: https://travis-ci.com/mpariente/pytorch_stoi
[travis-badge]: https://travis-ci.com/mpariente/pytorch_stoi.svg?branch=master
%prep
%autosetup -n torch-stoi-0.1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-torch-stoi -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.2-1
- Package Spec generated
|