1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
%global _empty_manifest_terminate_build 0
Name: python-torchfunc-nightly
Version: 1663034600
Release: 1
Summary: PyTorch functions to improve performance, analyse models and make your life easier.
License: MIT
URL: https://github.com/szymonmaszke/torchfunc
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d1/4f/ab187f42f60ca8a06bf1e22832fd52e9990326698bd4834baa833829f217/torchfunc-nightly-1663034600.tar.gz
BuildArch: noarch
Requires: python3-torch
%description
<img align="left" width="256" height="256" src="https://github.com/szymonmaszke/torchfunc/blob/master/assets/logos/medium.png">
* Improve and analyse performance of your neural network (e.g. Tensor Cores compatibility)
* Record/analyse internal state of `torch.nn.Module` as data passes through it
* Do the above based on external conditions (using single `Callable` to specify it)
* Day-to-day neural network related duties (model size, seeding, time measurements etc.)
* Get information about your host operating system, `torch.nn.Module` device, CUDA
capabilities etc.
| Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker | Roadmap |
|---------|------|-------|----------|-------|------|--------|---------|--------|---------|
| [](https://github.com/szymonmaszke/torchfunc/releases) | [](https://szymonmaszke.github.io/torchfunc/) |  |  | [](https://codebeat.co/projects/github-com-szymonmaszke-torchfunc-master) | [](https://pypi.org/project/torchfunc/) | [](https://www.python.org/) | [](https://pytorch.org/) | [](https://hub.docker.com/r/szymonmaszke/torchfunc) | [](https://github.com/szymonmaszke/torchfunc/blob/master/ROADMAP.md) |
# :bulb: Examples
__Check documentation here:__ [https://szymonmaszke.github.io/torchfunc](https://szymonmaszke.github.io/torchfunc)
## 1. Getting performance tips
- __Get instant performance tips about your module. All problems described by comments
will be shown by `torchfunc.performance.tips`:__
```python
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.convolution = torch.nn.Sequential(
torch.nn.Conv2d(1, 32, 3),
torch.nn.ReLU(inplace=True), # Inplace may harm kernel fusion
torch.nn.Conv2d(32, 128, 3, groups=32), # Depthwise is slower in PyTorch
torch.nn.ReLU(inplace=True), # Same as before
torch.nn.Conv2d(128, 250, 3), # Wrong output size for TensorCores
)
self.classifier = torch.nn.Sequential(
torch.nn.Linear(250, 64), # Wrong input size for TensorCores
torch.nn.ReLU(), # Fine, no info about this layer
torch.nn.Linear(64, 10), # Wrong output size for TensorCores
)
def forward(self, inputs):
convolved = torch.nn.AdaptiveAvgPool2d(1)(self.convolution(inputs)).flatten()
return self.classifier(convolved)
# All you have to do
print(torchfunc.performance.tips(Model()))
```
## 2. Seeding, weight freezing and others
- __Seed globaly (including `numpy` and `cuda`), freeze weights, check inference time and model size:__
```python
# Inb4 MNIST, you can use any module with those functions
model = torch.nn.Linear(784, 10)
torchfunc.seed(0)
frozen = torchfunc.module.freeze(model, bias=False)
with torchfunc.Timer() as timer:
frozen(torch.randn(32, 784)
print(timer.checkpoint()) # Time since the beginning
frozen(torch.randn(128, 784)
print(timer.checkpoint()) # Since last checkpoint
print(f"Overall time {timer}; Model size: {torchfunc.sizeof(frozen)}")
```
## 3. Record `torch.nn.Module` internal state
- __Record and sum per-layer activation statistics as data passes through network:__
```python
# Still MNIST but any module can be put in it's place
model = torch.nn.Sequential(
torch.nn.Linear(784, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 50),
torch.nn.ReLU(),
torch.nn.Linear(50, 10),
)
# Recorder which sums all inputs to layers
recorder = torchfunc.hooks.recorders.ForwardPre(reduction=lambda x, y: x+y)
# Record only for torch.nn.Linear
recorder.children(model, types=(torch.nn.Linear,))
# Train your network normally (or pass data through it)
...
# Activations of all neurons of first layer!
print(recorder[1]) # You can also post-process this data easily with apply
```
For other examples (and how to use condition), see [documentation](https://szymonmaszke.github.io/torchfunc/)
# :wrench: Installation
## :snake: [pip](<https://pypi.org/project/torchfunc/>)
### Latest release:
```shell
pip install --user torchfunc
```
### Nightly:
```shell
pip install --user torchfunc-nightly
```
## :whale2: [Docker](https://hub.docker.com/r/szymonmaszke/torchfunc)
__CPU standalone__ and various versions of __GPU enabled__ images are available
at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchfunc/tags).
For CPU quickstart, issue:
```shell
docker pull szymonmaszke/torchfunc:18.04
```
Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have
[nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set.
# :question: Contributing
If you find any issue or you think some functionality may be useful to others and fits this library, please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork).
To get an overview of things one can do to help this project, see [Roadmap](https://github.com/szymonmaszke/torchfunc/blob/master/ROADMAP.md).
%package -n python3-torchfunc-nightly
Summary: PyTorch functions to improve performance, analyse models and make your life easier.
Provides: python-torchfunc-nightly
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-torchfunc-nightly
<img align="left" width="256" height="256" src="https://github.com/szymonmaszke/torchfunc/blob/master/assets/logos/medium.png">
* Improve and analyse performance of your neural network (e.g. Tensor Cores compatibility)
* Record/analyse internal state of `torch.nn.Module` as data passes through it
* Do the above based on external conditions (using single `Callable` to specify it)
* Day-to-day neural network related duties (model size, seeding, time measurements etc.)
* Get information about your host operating system, `torch.nn.Module` device, CUDA
capabilities etc.
| Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker | Roadmap |
|---------|------|-------|----------|-------|------|--------|---------|--------|---------|
| [](https://github.com/szymonmaszke/torchfunc/releases) | [](https://szymonmaszke.github.io/torchfunc/) |  |  | [](https://codebeat.co/projects/github-com-szymonmaszke-torchfunc-master) | [](https://pypi.org/project/torchfunc/) | [](https://www.python.org/) | [](https://pytorch.org/) | [](https://hub.docker.com/r/szymonmaszke/torchfunc) | [](https://github.com/szymonmaszke/torchfunc/blob/master/ROADMAP.md) |
# :bulb: Examples
__Check documentation here:__ [https://szymonmaszke.github.io/torchfunc](https://szymonmaszke.github.io/torchfunc)
## 1. Getting performance tips
- __Get instant performance tips about your module. All problems described by comments
will be shown by `torchfunc.performance.tips`:__
```python
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.convolution = torch.nn.Sequential(
torch.nn.Conv2d(1, 32, 3),
torch.nn.ReLU(inplace=True), # Inplace may harm kernel fusion
torch.nn.Conv2d(32, 128, 3, groups=32), # Depthwise is slower in PyTorch
torch.nn.ReLU(inplace=True), # Same as before
torch.nn.Conv2d(128, 250, 3), # Wrong output size for TensorCores
)
self.classifier = torch.nn.Sequential(
torch.nn.Linear(250, 64), # Wrong input size for TensorCores
torch.nn.ReLU(), # Fine, no info about this layer
torch.nn.Linear(64, 10), # Wrong output size for TensorCores
)
def forward(self, inputs):
convolved = torch.nn.AdaptiveAvgPool2d(1)(self.convolution(inputs)).flatten()
return self.classifier(convolved)
# All you have to do
print(torchfunc.performance.tips(Model()))
```
## 2. Seeding, weight freezing and others
- __Seed globaly (including `numpy` and `cuda`), freeze weights, check inference time and model size:__
```python
# Inb4 MNIST, you can use any module with those functions
model = torch.nn.Linear(784, 10)
torchfunc.seed(0)
frozen = torchfunc.module.freeze(model, bias=False)
with torchfunc.Timer() as timer:
frozen(torch.randn(32, 784)
print(timer.checkpoint()) # Time since the beginning
frozen(torch.randn(128, 784)
print(timer.checkpoint()) # Since last checkpoint
print(f"Overall time {timer}; Model size: {torchfunc.sizeof(frozen)}")
```
## 3. Record `torch.nn.Module` internal state
- __Record and sum per-layer activation statistics as data passes through network:__
```python
# Still MNIST but any module can be put in it's place
model = torch.nn.Sequential(
torch.nn.Linear(784, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 50),
torch.nn.ReLU(),
torch.nn.Linear(50, 10),
)
# Recorder which sums all inputs to layers
recorder = torchfunc.hooks.recorders.ForwardPre(reduction=lambda x, y: x+y)
# Record only for torch.nn.Linear
recorder.children(model, types=(torch.nn.Linear,))
# Train your network normally (or pass data through it)
...
# Activations of all neurons of first layer!
print(recorder[1]) # You can also post-process this data easily with apply
```
For other examples (and how to use condition), see [documentation](https://szymonmaszke.github.io/torchfunc/)
# :wrench: Installation
## :snake: [pip](<https://pypi.org/project/torchfunc/>)
### Latest release:
```shell
pip install --user torchfunc
```
### Nightly:
```shell
pip install --user torchfunc-nightly
```
## :whale2: [Docker](https://hub.docker.com/r/szymonmaszke/torchfunc)
__CPU standalone__ and various versions of __GPU enabled__ images are available
at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchfunc/tags).
For CPU quickstart, issue:
```shell
docker pull szymonmaszke/torchfunc:18.04
```
Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have
[nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set.
# :question: Contributing
If you find any issue or you think some functionality may be useful to others and fits this library, please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork).
To get an overview of things one can do to help this project, see [Roadmap](https://github.com/szymonmaszke/torchfunc/blob/master/ROADMAP.md).
%package help
Summary: Development documents and examples for torchfunc-nightly
Provides: python3-torchfunc-nightly-doc
%description help
<img align="left" width="256" height="256" src="https://github.com/szymonmaszke/torchfunc/blob/master/assets/logos/medium.png">
* Improve and analyse performance of your neural network (e.g. Tensor Cores compatibility)
* Record/analyse internal state of `torch.nn.Module` as data passes through it
* Do the above based on external conditions (using single `Callable` to specify it)
* Day-to-day neural network related duties (model size, seeding, time measurements etc.)
* Get information about your host operating system, `torch.nn.Module` device, CUDA
capabilities etc.
| Version | Docs | Tests | Coverage | Style | PyPI | Python | PyTorch | Docker | Roadmap |
|---------|------|-------|----------|-------|------|--------|---------|--------|---------|
| [](https://github.com/szymonmaszke/torchfunc/releases) | [](https://szymonmaszke.github.io/torchfunc/) |  |  | [](https://codebeat.co/projects/github-com-szymonmaszke-torchfunc-master) | [](https://pypi.org/project/torchfunc/) | [](https://www.python.org/) | [](https://pytorch.org/) | [](https://hub.docker.com/r/szymonmaszke/torchfunc) | [](https://github.com/szymonmaszke/torchfunc/blob/master/ROADMAP.md) |
# :bulb: Examples
__Check documentation here:__ [https://szymonmaszke.github.io/torchfunc](https://szymonmaszke.github.io/torchfunc)
## 1. Getting performance tips
- __Get instant performance tips about your module. All problems described by comments
will be shown by `torchfunc.performance.tips`:__
```python
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.convolution = torch.nn.Sequential(
torch.nn.Conv2d(1, 32, 3),
torch.nn.ReLU(inplace=True), # Inplace may harm kernel fusion
torch.nn.Conv2d(32, 128, 3, groups=32), # Depthwise is slower in PyTorch
torch.nn.ReLU(inplace=True), # Same as before
torch.nn.Conv2d(128, 250, 3), # Wrong output size for TensorCores
)
self.classifier = torch.nn.Sequential(
torch.nn.Linear(250, 64), # Wrong input size for TensorCores
torch.nn.ReLU(), # Fine, no info about this layer
torch.nn.Linear(64, 10), # Wrong output size for TensorCores
)
def forward(self, inputs):
convolved = torch.nn.AdaptiveAvgPool2d(1)(self.convolution(inputs)).flatten()
return self.classifier(convolved)
# All you have to do
print(torchfunc.performance.tips(Model()))
```
## 2. Seeding, weight freezing and others
- __Seed globaly (including `numpy` and `cuda`), freeze weights, check inference time and model size:__
```python
# Inb4 MNIST, you can use any module with those functions
model = torch.nn.Linear(784, 10)
torchfunc.seed(0)
frozen = torchfunc.module.freeze(model, bias=False)
with torchfunc.Timer() as timer:
frozen(torch.randn(32, 784)
print(timer.checkpoint()) # Time since the beginning
frozen(torch.randn(128, 784)
print(timer.checkpoint()) # Since last checkpoint
print(f"Overall time {timer}; Model size: {torchfunc.sizeof(frozen)}")
```
## 3. Record `torch.nn.Module` internal state
- __Record and sum per-layer activation statistics as data passes through network:__
```python
# Still MNIST but any module can be put in it's place
model = torch.nn.Sequential(
torch.nn.Linear(784, 100),
torch.nn.ReLU(),
torch.nn.Linear(100, 50),
torch.nn.ReLU(),
torch.nn.Linear(50, 10),
)
# Recorder which sums all inputs to layers
recorder = torchfunc.hooks.recorders.ForwardPre(reduction=lambda x, y: x+y)
# Record only for torch.nn.Linear
recorder.children(model, types=(torch.nn.Linear,))
# Train your network normally (or pass data through it)
...
# Activations of all neurons of first layer!
print(recorder[1]) # You can also post-process this data easily with apply
```
For other examples (and how to use condition), see [documentation](https://szymonmaszke.github.io/torchfunc/)
# :wrench: Installation
## :snake: [pip](<https://pypi.org/project/torchfunc/>)
### Latest release:
```shell
pip install --user torchfunc
```
### Nightly:
```shell
pip install --user torchfunc-nightly
```
## :whale2: [Docker](https://hub.docker.com/r/szymonmaszke/torchfunc)
__CPU standalone__ and various versions of __GPU enabled__ images are available
at [dockerhub](https://hub.docker.com/r/szymonmaszke/torchfunc/tags).
For CPU quickstart, issue:
```shell
docker pull szymonmaszke/torchfunc:18.04
```
Nightly builds are also available, just prefix tag with `nightly_`. If you are going for `GPU` image make sure you have
[nvidia/docker](https://github.com/NVIDIA/nvidia-docker) installed and it's runtime set.
# :question: Contributing
If you find any issue or you think some functionality may be useful to others and fits this library, please [open new Issue](https://help.github.com/en/articles/creating-an-issue) or [create Pull Request](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork).
To get an overview of things one can do to help this project, see [Roadmap](https://github.com/szymonmaszke/torchfunc/blob/master/ROADMAP.md).
%prep
%autosetup -n torchfunc-nightly-1663034600
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-torchfunc-nightly -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1663034600-1
- Package Spec generated
|