summaryrefslogtreecommitdiff
path: root/python-tracers.spec
blob: bb2c3c137532d64bfa3c1ddfedeb13de2941d0f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
%global _empty_manifest_terminate_build 0
Name:		python-tracers
Version:	21.8.6876
Release:	1
Summary:	Open-Source APM (Application monitoring) project that offers you minimal overhead wrappers for profiling your code execution flow
License:	MIT
URL:		https://github.com/fluidattacks/tracers
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/dc/0b/63b60b15ba76dd93d2c286cc34324fbaf354e397bf3110a789eb507f1379/tracers-21.8.6876.tar.gz
BuildArch:	noarch

Requires:	python3-aioboto3
Requires:	python3-aiogqlc
Requires:	python3-more-itertools

%description
+++ b/examples/with_tracers.py
@@ -1,15 +1,18 @@
 import time
 from dateutil.parser import parse
+from tracers.function import trace
+@trace()
 def example():
     time.sleep(2.0)
     your_business_logic('Sat Oct 11')
+@trace()
 def your_business_logic(date: str):
     parse(date)
     time.sleep(1.0)
 example()
```
If you run it, all the functions you decorated will be traced
and you'll have metrics of the execution flow:
```
🛈  Finished transaction: 3.00 seconds
     # Timestamp                Net              Total    Call Chain
     1     0.00s     2.00s [ 66.7%]     3.00s [100.0%]    ✓ example
     2     2.00s     1.00s [ 33.3%]     1.00s [ 33.3%]    ¦   ✓ your_business_logic
           Count                Net              Total    Function
               1     2.00s [ 66.7%]     3.00s [100.0%]    ✓ example
               1     1.00s [ 33.3%]     1.00s [ 33.3%]    ✓ your_business_logic
```
From the output you can conclude:
- executing function *example* took a total of *3.0* seconds to complete
- function *example* takes *66.7%* of the execution time
- function *example encloses *100%* of your code time
- function *example* called function: *your_business_logic*
- function *your_business_logic* took *1.0* seconds out of the *3.0* seconds
  the function *example* needed to complete
- function *your_business_logic* represents *33.3%* of your execution time
Tracing code is not limited to your own code.
You can trace any **callable object** including **third party packages**,
**Python's standard library**, and almost anything
The level of detail is up to you!

%package -n python3-tracers
Summary:	Open-Source APM (Application monitoring) project that offers you minimal overhead wrappers for profiling your code execution flow
Provides:	python-tracers
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tracers
+++ b/examples/with_tracers.py
@@ -1,15 +1,18 @@
 import time
 from dateutil.parser import parse
+from tracers.function import trace
+@trace()
 def example():
     time.sleep(2.0)
     your_business_logic('Sat Oct 11')
+@trace()
 def your_business_logic(date: str):
     parse(date)
     time.sleep(1.0)
 example()
```
If you run it, all the functions you decorated will be traced
and you'll have metrics of the execution flow:
```
🛈  Finished transaction: 3.00 seconds
     # Timestamp                Net              Total    Call Chain
     1     0.00s     2.00s [ 66.7%]     3.00s [100.0%]    ✓ example
     2     2.00s     1.00s [ 33.3%]     1.00s [ 33.3%]    ¦   ✓ your_business_logic
           Count                Net              Total    Function
               1     2.00s [ 66.7%]     3.00s [100.0%]    ✓ example
               1     1.00s [ 33.3%]     1.00s [ 33.3%]    ✓ your_business_logic
```
From the output you can conclude:
- executing function *example* took a total of *3.0* seconds to complete
- function *example* takes *66.7%* of the execution time
- function *example encloses *100%* of your code time
- function *example* called function: *your_business_logic*
- function *your_business_logic* took *1.0* seconds out of the *3.0* seconds
  the function *example* needed to complete
- function *your_business_logic* represents *33.3%* of your execution time
Tracing code is not limited to your own code.
You can trace any **callable object** including **third party packages**,
**Python's standard library**, and almost anything
The level of detail is up to you!

%package help
Summary:	Development documents and examples for tracers
Provides:	python3-tracers-doc
%description help
+++ b/examples/with_tracers.py
@@ -1,15 +1,18 @@
 import time
 from dateutil.parser import parse
+from tracers.function import trace
+@trace()
 def example():
     time.sleep(2.0)
     your_business_logic('Sat Oct 11')
+@trace()
 def your_business_logic(date: str):
     parse(date)
     time.sleep(1.0)
 example()
```
If you run it, all the functions you decorated will be traced
and you'll have metrics of the execution flow:
```
🛈  Finished transaction: 3.00 seconds
     # Timestamp                Net              Total    Call Chain
     1     0.00s     2.00s [ 66.7%]     3.00s [100.0%]    ✓ example
     2     2.00s     1.00s [ 33.3%]     1.00s [ 33.3%]    ¦   ✓ your_business_logic
           Count                Net              Total    Function
               1     2.00s [ 66.7%]     3.00s [100.0%]    ✓ example
               1     1.00s [ 33.3%]     1.00s [ 33.3%]    ✓ your_business_logic
```
From the output you can conclude:
- executing function *example* took a total of *3.0* seconds to complete
- function *example* takes *66.7%* of the execution time
- function *example encloses *100%* of your code time
- function *example* called function: *your_business_logic*
- function *your_business_logic* took *1.0* seconds out of the *3.0* seconds
  the function *example* needed to complete
- function *your_business_logic* represents *33.3%* of your execution time
Tracing code is not limited to your own code.
You can trace any **callable object** including **third party packages**,
**Python's standard library**, and almost anything
The level of detail is up to you!

%prep
%autosetup -n tracers-21.8.6876

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tracers -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 21.8.6876-1
- Package Spec generated