1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
%global _empty_manifest_terminate_build 0
Name: python-trexio
Version: 1.3.2
Release: 1
Summary: Python API of the TREXIO library
License: BSD
URL: https://github.com/TREX-CoE/trexio
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a4/14/0170089577ec974a808106a0589e7bc641ff39bc00e9a34463a9bd2b5d9b/trexio-1.3.2.tar.gz
BuildArch: noarch
Requires: python3-numpy
%description
# TREXIO Python API
[](https://badge.fury.io/py/trexio)
[](https://mybinder.org/v2/gh/TREX-CoE/trexio-tutorials/HEAD)
TREXIO provides a Python API, which enables interactive calls to the library.
It facilitates the development of interfaces between different codes and
can be used to convert data from one input/output file format into another.
## Requirements
- python3 (>= 3.6)
- numpy (>= 1.17.3)
## Installation from PyPI
In short, you can run the following command:
`pip install trexio`
However, it is good practice to first check for updates of the build-system packages. This can be achieved by running
`python -m pip install --upgrade pip setuptools build wheel`
**Note: we highly recommend to use virtual environments to avoid compatibility issues and to improve reproducibility.**
For more details, see the corresponding part of the [Python documentation](https://docs.python.org/3/library/venv.html#creating-virtual-environments).
## Additional requirements (for installation from source)
- C compiler (gcc/icc/clang)
- HDF5 library (>= 1.8)
- pkgconfig (Python package)
- build (Python package)
- pytest (Python package)
## Installation from source
1. Download the `trexio-<version>.tar.gz` file with the latest Python API
2. `gzip -cd trexio-<version>.tar.gz | tar xvf -`
3. `cd trexio-<version>`
4. `pip install -r requirements.txt` (this installs all required python dependencies)
5. Export custom environment variables needed for the installation following the procedure below and replacing `/path/to/hdf5/` with your paths.
The following two steps can be skipped if HDF5 is properly configured for `pkg-config` (i.e. if executing `pkg-config --libs hdf5` returns a list of options).
- `export H5_CFLAGS=-I/path/to/hdf5/include`
- `export H5_LDFLAGS=-L/path/to/hdf5/lib`
6. `pip install .` (this installs `trexio` in your environment)
7. `cd test && python -m pytest -v test_api.py` (this executes several tests that verify the installation)
You are ready to go!
**Note:**
installation based on `pip` compiles its own C extension (shared library) called `pytrexio`.
This extension is built from the TREXIO source files coupled to the wrapper code generated by [SWIG](http://www.swig.org/).
The compiler options during this installation may differ from the ones used to compile the primary TREXIO API in C.
Furthermore, custom compiler flags provided to `./configure` or `make` are not applied to the Python API.
## Examples
An interactive Jupyter notebook called `tutorial_benzene.ipynb` is provided in the `examples` directory.
The notebook can be lauched either locally (see [next section](#Running-the-notebook) for details) or using [pre-built environment on Binder](https://mybinder.org/v2/gh/TREX-CoE/trexio-tutorials/HEAD?filepath=notebooks%2Ftutorial_benzene.ipynb).
Jupyter can be installed using `pip install jupyter`. If you are not familiar with it, feel free to consult the [Jupyter documentation](https://jupyter-notebook.readthedocs.io/en/stable/notebook.html).
### Running the notebook
The example notebook can be launched using the following command:
`jupyter notebook tutorial_benzene.ipynb`
### Additional steps needed to run a custom virtual environment in Jupyter notebooks
In some cases, it may happen that the Jupyter kernels in the activated virtual environment (e.g. `myvenv`) still point to the system-wide python binaries and not to the environment ones.
This will result in `ImportError` when importing `trexio` in the notebook cell. In order to avoid this, the `myvenv` has to be installed as an additional kernel.
This requires `ipykernel` python package, which usually comes together with the Jupyter installation. If this is not the case, run `pip install ipykernel`.
You can install `myvenv` as a kernel by executing the following command:
`python3 -m ipykernel install --user --name=myvenv`
Now you can launch a Jupyter notebook. Once it is open, make sure that your virtual environment is selected as the current kernel.
If this is not the case, try this:
1. Press the `Kernel` button in the navigation panel
2. In the output list of options select `Change kernel`
3. Find the name of your virtual environment (e.g. `myvenv`) in the list and select it
That's it, you have activated the custom virtual environment called `myvenv` in your notebook.
To uninstall the kernel named `myvenv`, execute the following command:
`jupyter kernelspec uninstall myvenv`
%package -n python3-trexio
Summary: Python API of the TREXIO library
Provides: python-trexio
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-trexio
# TREXIO Python API
[](https://badge.fury.io/py/trexio)
[](https://mybinder.org/v2/gh/TREX-CoE/trexio-tutorials/HEAD)
TREXIO provides a Python API, which enables interactive calls to the library.
It facilitates the development of interfaces between different codes and
can be used to convert data from one input/output file format into another.
## Requirements
- python3 (>= 3.6)
- numpy (>= 1.17.3)
## Installation from PyPI
In short, you can run the following command:
`pip install trexio`
However, it is good practice to first check for updates of the build-system packages. This can be achieved by running
`python -m pip install --upgrade pip setuptools build wheel`
**Note: we highly recommend to use virtual environments to avoid compatibility issues and to improve reproducibility.**
For more details, see the corresponding part of the [Python documentation](https://docs.python.org/3/library/venv.html#creating-virtual-environments).
## Additional requirements (for installation from source)
- C compiler (gcc/icc/clang)
- HDF5 library (>= 1.8)
- pkgconfig (Python package)
- build (Python package)
- pytest (Python package)
## Installation from source
1. Download the `trexio-<version>.tar.gz` file with the latest Python API
2. `gzip -cd trexio-<version>.tar.gz | tar xvf -`
3. `cd trexio-<version>`
4. `pip install -r requirements.txt` (this installs all required python dependencies)
5. Export custom environment variables needed for the installation following the procedure below and replacing `/path/to/hdf5/` with your paths.
The following two steps can be skipped if HDF5 is properly configured for `pkg-config` (i.e. if executing `pkg-config --libs hdf5` returns a list of options).
- `export H5_CFLAGS=-I/path/to/hdf5/include`
- `export H5_LDFLAGS=-L/path/to/hdf5/lib`
6. `pip install .` (this installs `trexio` in your environment)
7. `cd test && python -m pytest -v test_api.py` (this executes several tests that verify the installation)
You are ready to go!
**Note:**
installation based on `pip` compiles its own C extension (shared library) called `pytrexio`.
This extension is built from the TREXIO source files coupled to the wrapper code generated by [SWIG](http://www.swig.org/).
The compiler options during this installation may differ from the ones used to compile the primary TREXIO API in C.
Furthermore, custom compiler flags provided to `./configure` or `make` are not applied to the Python API.
## Examples
An interactive Jupyter notebook called `tutorial_benzene.ipynb` is provided in the `examples` directory.
The notebook can be lauched either locally (see [next section](#Running-the-notebook) for details) or using [pre-built environment on Binder](https://mybinder.org/v2/gh/TREX-CoE/trexio-tutorials/HEAD?filepath=notebooks%2Ftutorial_benzene.ipynb).
Jupyter can be installed using `pip install jupyter`. If you are not familiar with it, feel free to consult the [Jupyter documentation](https://jupyter-notebook.readthedocs.io/en/stable/notebook.html).
### Running the notebook
The example notebook can be launched using the following command:
`jupyter notebook tutorial_benzene.ipynb`
### Additional steps needed to run a custom virtual environment in Jupyter notebooks
In some cases, it may happen that the Jupyter kernels in the activated virtual environment (e.g. `myvenv`) still point to the system-wide python binaries and not to the environment ones.
This will result in `ImportError` when importing `trexio` in the notebook cell. In order to avoid this, the `myvenv` has to be installed as an additional kernel.
This requires `ipykernel` python package, which usually comes together with the Jupyter installation. If this is not the case, run `pip install ipykernel`.
You can install `myvenv` as a kernel by executing the following command:
`python3 -m ipykernel install --user --name=myvenv`
Now you can launch a Jupyter notebook. Once it is open, make sure that your virtual environment is selected as the current kernel.
If this is not the case, try this:
1. Press the `Kernel` button in the navigation panel
2. In the output list of options select `Change kernel`
3. Find the name of your virtual environment (e.g. `myvenv`) in the list and select it
That's it, you have activated the custom virtual environment called `myvenv` in your notebook.
To uninstall the kernel named `myvenv`, execute the following command:
`jupyter kernelspec uninstall myvenv`
%package help
Summary: Development documents and examples for trexio
Provides: python3-trexio-doc
%description help
# TREXIO Python API
[](https://badge.fury.io/py/trexio)
[](https://mybinder.org/v2/gh/TREX-CoE/trexio-tutorials/HEAD)
TREXIO provides a Python API, which enables interactive calls to the library.
It facilitates the development of interfaces between different codes and
can be used to convert data from one input/output file format into another.
## Requirements
- python3 (>= 3.6)
- numpy (>= 1.17.3)
## Installation from PyPI
In short, you can run the following command:
`pip install trexio`
However, it is good practice to first check for updates of the build-system packages. This can be achieved by running
`python -m pip install --upgrade pip setuptools build wheel`
**Note: we highly recommend to use virtual environments to avoid compatibility issues and to improve reproducibility.**
For more details, see the corresponding part of the [Python documentation](https://docs.python.org/3/library/venv.html#creating-virtual-environments).
## Additional requirements (for installation from source)
- C compiler (gcc/icc/clang)
- HDF5 library (>= 1.8)
- pkgconfig (Python package)
- build (Python package)
- pytest (Python package)
## Installation from source
1. Download the `trexio-<version>.tar.gz` file with the latest Python API
2. `gzip -cd trexio-<version>.tar.gz | tar xvf -`
3. `cd trexio-<version>`
4. `pip install -r requirements.txt` (this installs all required python dependencies)
5. Export custom environment variables needed for the installation following the procedure below and replacing `/path/to/hdf5/` with your paths.
The following two steps can be skipped if HDF5 is properly configured for `pkg-config` (i.e. if executing `pkg-config --libs hdf5` returns a list of options).
- `export H5_CFLAGS=-I/path/to/hdf5/include`
- `export H5_LDFLAGS=-L/path/to/hdf5/lib`
6. `pip install .` (this installs `trexio` in your environment)
7. `cd test && python -m pytest -v test_api.py` (this executes several tests that verify the installation)
You are ready to go!
**Note:**
installation based on `pip` compiles its own C extension (shared library) called `pytrexio`.
This extension is built from the TREXIO source files coupled to the wrapper code generated by [SWIG](http://www.swig.org/).
The compiler options during this installation may differ from the ones used to compile the primary TREXIO API in C.
Furthermore, custom compiler flags provided to `./configure` or `make` are not applied to the Python API.
## Examples
An interactive Jupyter notebook called `tutorial_benzene.ipynb` is provided in the `examples` directory.
The notebook can be lauched either locally (see [next section](#Running-the-notebook) for details) or using [pre-built environment on Binder](https://mybinder.org/v2/gh/TREX-CoE/trexio-tutorials/HEAD?filepath=notebooks%2Ftutorial_benzene.ipynb).
Jupyter can be installed using `pip install jupyter`. If you are not familiar with it, feel free to consult the [Jupyter documentation](https://jupyter-notebook.readthedocs.io/en/stable/notebook.html).
### Running the notebook
The example notebook can be launched using the following command:
`jupyter notebook tutorial_benzene.ipynb`
### Additional steps needed to run a custom virtual environment in Jupyter notebooks
In some cases, it may happen that the Jupyter kernels in the activated virtual environment (e.g. `myvenv`) still point to the system-wide python binaries and not to the environment ones.
This will result in `ImportError` when importing `trexio` in the notebook cell. In order to avoid this, the `myvenv` has to be installed as an additional kernel.
This requires `ipykernel` python package, which usually comes together with the Jupyter installation. If this is not the case, run `pip install ipykernel`.
You can install `myvenv` as a kernel by executing the following command:
`python3 -m ipykernel install --user --name=myvenv`
Now you can launch a Jupyter notebook. Once it is open, make sure that your virtual environment is selected as the current kernel.
If this is not the case, try this:
1. Press the `Kernel` button in the navigation panel
2. In the output list of options select `Change kernel`
3. Find the name of your virtual environment (e.g. `myvenv`) in the list and select it
That's it, you have activated the custom virtual environment called `myvenv` in your notebook.
To uninstall the kernel named `myvenv`, execute the following command:
`jupyter kernelspec uninstall myvenv`
%prep
%autosetup -n trexio-1.3.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-trexio -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.2-1
- Package Spec generated
|