summaryrefslogtreecommitdiff
path: root/python-tsfel.spec
blob: 0d2b929d85bc0bf93231688257f2bbca3fed0e3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
%global _empty_manifest_terminate_build 0
Name:		python-tsfel
Version:	0.1.5
Release:	1
Summary:	Library for time series feature extraction
License:	BSD License
URL:		https://github.com/fraunhoferportugal/tsfel/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/0b/9d/f1c21f65817d86b9e5b47288b94fa9cc62965a001d0c776810260899ee0f/tsfel-0.1.5.tar.gz
BuildArch:	noarch

Requires:	python3-Sphinx
Requires:	python3-gspread
Requires:	python3-ipython
Requires:	python3-numpy
Requires:	python3-oauth2client
Requires:	python3-pandas
Requires:	python3-scipy
Requires:	python3-setuptools

%description
[![Documentation Status](https://readthedocs.org/projects/tsfel/badge/?version=latest)](https://tsfel.readthedocs.io/en/latest/?badge=latest)
[![license](https://img.shields.io/badge/License-BSD%203-brightgreen)](https://github.com/fraunhoferportugal/tsfel/blob/master/LICENSE.txt)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tsfel)
![PyPI](https://img.shields.io/pypi/v/tsfel)
[![Downloads](https://pepy.tech/badge/tsfel)](https://pepy.tech/project/tsfel)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/fraunhoferportugal/tsfel/blob/master/notebooks/TSFEL_HAR_Example.ipynb)

# Time Series Feature Extraction Library
## Intuitive time series feature extraction
This repository hosts the **TSFEL - Time Series Feature Extraction Library** python package. TSFEL assists researchers on exploratory feature extraction tasks on time series without requiring significant programming effort.

Users can interact with TSFEL using two methods:
##### Online
It does not requires installation as it relies on Google Colabs and a user interface provided by Google Sheets

##### Offline
Advanced users can take full potential of TSFEL by installing as a python package
```python
pip install tsfel
```

## Includes a comprehensive number of features
TSFEL is optimized for time series and **automatically extracts over 60 different features on the statistical, temporal and spectral domains.**

## Functionalities
* **Intuitive, fast deployment and reproducible**: interactive UI for feature selection and customization
* **Computational complexity evaluation**: estimate the computational effort before extracting features
* **Comprehensive documentation**: each feature extraction method has a detailed explanation
* **Unit tested**: we provide unit tests for each feature
* **Easily extended**: adding new features is easy and we encourage you to contribute with your custom features

## Get started
The code below extracts all the available features on an example dataset file.

```python
import tsfel
import pandas as pd

# load dataset
df = pd.read_csv('Dataset.txt')

# Retrieves a pre-defined feature configuration file to extract all available features
cfg = tsfel.get_features_by_domain()

# Extract features
X = tsfel.time_series_features_extractor(cfg, df)
```

## Available features

#### Statistical domain
| Features                   | Computational Cost |
|----------------------------|:------------------:|
| ECDF                       |          1         |
| ECDF Percentile            |          1         |
| ECDF Percentile Count      |          1         |
| Histogram                  |          1         |
| Interquartile range        |          1         |
| Kurtosis                   |          1         |
| Max                        |          1         |
| Mean                       |          1         |
| Mean absolute deviation    |          1         |
| Median                     |          1         |
| Median absolute deviation  |          1         |
| Min                        |          1         |
| Root mean square           |          1         |
| Skewness                   |          1         |
| Standard deviation         |          1         |
| Variance                   |          1         |


#### Temporal domain
| Features                   | Computational Cost |
|----------------------------|:------------------:|
| Absolute energy            |          1         |
| Area under the curve       |          1         |
| Autocorrelation            |          1         |
| Centroid                   |          1         |
| Entropy                    |          1         |
| Mean absolute diff         |          1         |
| Mean diff                  |          1         |
| Median absolute diff       |          1         |
| Median diff                |          1         |
| Negative turning points    |          1         |
| Peak to peak distance      |          1         |
| Positive turning points    |          1         |
| Signal distance            |          1         |
| Slope                      |          1         |
| Sum absolute diff          |          1         |
| Total energy               |          1         |
| Zero crossing rate         |          1         |
| Neighbourhood peaks        |          1         |


#### Spectral domain
| Features                          | Computational Cost |
|-----------------------------------|:------------------:|
| FFT mean coefficient              |          1         |
| Fundamental frequency             |          1         |
| Human range energy                |          2         |
| LPCC                              |          1         |
| MFCC                              |          1         |
| Max power spectrum                |          1         |
| Maximum frequency                 |          1         |
| Median frequency                  |          1         |
| Power bandwidth                   |          1         |
| Spectral centroid                 |          2         |
| Spectral decrease                 |          1         |
| Spectral distance                 |          1         |
| Spectral entropy                  |          1         |
| Spectral kurtosis                 |          2         |
| Spectral positive turning points  |          1         |
| Spectral roll-off                 |          1         |
| Spectral roll-on                  |          1         |
| Spectral skewness                 |          2         |
| Spectral slope                    |          1         |
| Spectral spread                   |          2         |
| Spectral variation                |          1         |
| Wavelet absolute mean             |          2         |
| Wavelet energy                    |          2         |
| Wavelet standard deviation        |          2         |
| Wavelet entropy                   |          2         |
| Wavelet variance                  |          2         |


## Citing
When using TSFEL please cite the following publication:

Barandas, Marília and Folgado, Duarte, et al. "*TSFEL: Time Series Feature Extraction Library.*" SoftwareX 11 (2020). [https://doi.org/10.1016/j.softx.2020.100456](https://doi.org/10.1016/j.softx.2020.100456)

## Acknowledgements
We would like to acknowledge the financial support obtained from the project Total Integrated and Predictive Manufacturing System Platform for Industry 4.0, co-funded by Portugal 2020, framed under the COMPETE 2020 (Operational Programme  Competitiveness and Internationalization) and European Regional Development Fund (ERDF) from European Union (EU), with operation code POCI-01-0247-FEDER-038436.


%package -n python3-tsfel
Summary:	Library for time series feature extraction
Provides:	python-tsfel
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-tsfel
[![Documentation Status](https://readthedocs.org/projects/tsfel/badge/?version=latest)](https://tsfel.readthedocs.io/en/latest/?badge=latest)
[![license](https://img.shields.io/badge/License-BSD%203-brightgreen)](https://github.com/fraunhoferportugal/tsfel/blob/master/LICENSE.txt)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tsfel)
![PyPI](https://img.shields.io/pypi/v/tsfel)
[![Downloads](https://pepy.tech/badge/tsfel)](https://pepy.tech/project/tsfel)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/fraunhoferportugal/tsfel/blob/master/notebooks/TSFEL_HAR_Example.ipynb)

# Time Series Feature Extraction Library
## Intuitive time series feature extraction
This repository hosts the **TSFEL - Time Series Feature Extraction Library** python package. TSFEL assists researchers on exploratory feature extraction tasks on time series without requiring significant programming effort.

Users can interact with TSFEL using two methods:
##### Online
It does not requires installation as it relies on Google Colabs and a user interface provided by Google Sheets

##### Offline
Advanced users can take full potential of TSFEL by installing as a python package
```python
pip install tsfel
```

## Includes a comprehensive number of features
TSFEL is optimized for time series and **automatically extracts over 60 different features on the statistical, temporal and spectral domains.**

## Functionalities
* **Intuitive, fast deployment and reproducible**: interactive UI for feature selection and customization
* **Computational complexity evaluation**: estimate the computational effort before extracting features
* **Comprehensive documentation**: each feature extraction method has a detailed explanation
* **Unit tested**: we provide unit tests for each feature
* **Easily extended**: adding new features is easy and we encourage you to contribute with your custom features

## Get started
The code below extracts all the available features on an example dataset file.

```python
import tsfel
import pandas as pd

# load dataset
df = pd.read_csv('Dataset.txt')

# Retrieves a pre-defined feature configuration file to extract all available features
cfg = tsfel.get_features_by_domain()

# Extract features
X = tsfel.time_series_features_extractor(cfg, df)
```

## Available features

#### Statistical domain
| Features                   | Computational Cost |
|----------------------------|:------------------:|
| ECDF                       |          1         |
| ECDF Percentile            |          1         |
| ECDF Percentile Count      |          1         |
| Histogram                  |          1         |
| Interquartile range        |          1         |
| Kurtosis                   |          1         |
| Max                        |          1         |
| Mean                       |          1         |
| Mean absolute deviation    |          1         |
| Median                     |          1         |
| Median absolute deviation  |          1         |
| Min                        |          1         |
| Root mean square           |          1         |
| Skewness                   |          1         |
| Standard deviation         |          1         |
| Variance                   |          1         |


#### Temporal domain
| Features                   | Computational Cost |
|----------------------------|:------------------:|
| Absolute energy            |          1         |
| Area under the curve       |          1         |
| Autocorrelation            |          1         |
| Centroid                   |          1         |
| Entropy                    |          1         |
| Mean absolute diff         |          1         |
| Mean diff                  |          1         |
| Median absolute diff       |          1         |
| Median diff                |          1         |
| Negative turning points    |          1         |
| Peak to peak distance      |          1         |
| Positive turning points    |          1         |
| Signal distance            |          1         |
| Slope                      |          1         |
| Sum absolute diff          |          1         |
| Total energy               |          1         |
| Zero crossing rate         |          1         |
| Neighbourhood peaks        |          1         |


#### Spectral domain
| Features                          | Computational Cost |
|-----------------------------------|:------------------:|
| FFT mean coefficient              |          1         |
| Fundamental frequency             |          1         |
| Human range energy                |          2         |
| LPCC                              |          1         |
| MFCC                              |          1         |
| Max power spectrum                |          1         |
| Maximum frequency                 |          1         |
| Median frequency                  |          1         |
| Power bandwidth                   |          1         |
| Spectral centroid                 |          2         |
| Spectral decrease                 |          1         |
| Spectral distance                 |          1         |
| Spectral entropy                  |          1         |
| Spectral kurtosis                 |          2         |
| Spectral positive turning points  |          1         |
| Spectral roll-off                 |          1         |
| Spectral roll-on                  |          1         |
| Spectral skewness                 |          2         |
| Spectral slope                    |          1         |
| Spectral spread                   |          2         |
| Spectral variation                |          1         |
| Wavelet absolute mean             |          2         |
| Wavelet energy                    |          2         |
| Wavelet standard deviation        |          2         |
| Wavelet entropy                   |          2         |
| Wavelet variance                  |          2         |


## Citing
When using TSFEL please cite the following publication:

Barandas, Marília and Folgado, Duarte, et al. "*TSFEL: Time Series Feature Extraction Library.*" SoftwareX 11 (2020). [https://doi.org/10.1016/j.softx.2020.100456](https://doi.org/10.1016/j.softx.2020.100456)

## Acknowledgements
We would like to acknowledge the financial support obtained from the project Total Integrated and Predictive Manufacturing System Platform for Industry 4.0, co-funded by Portugal 2020, framed under the COMPETE 2020 (Operational Programme  Competitiveness and Internationalization) and European Regional Development Fund (ERDF) from European Union (EU), with operation code POCI-01-0247-FEDER-038436.


%package help
Summary:	Development documents and examples for tsfel
Provides:	python3-tsfel-doc
%description help
[![Documentation Status](https://readthedocs.org/projects/tsfel/badge/?version=latest)](https://tsfel.readthedocs.io/en/latest/?badge=latest)
[![license](https://img.shields.io/badge/License-BSD%203-brightgreen)](https://github.com/fraunhoferportugal/tsfel/blob/master/LICENSE.txt)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tsfel)
![PyPI](https://img.shields.io/pypi/v/tsfel)
[![Downloads](https://pepy.tech/badge/tsfel)](https://pepy.tech/project/tsfel)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/fraunhoferportugal/tsfel/blob/master/notebooks/TSFEL_HAR_Example.ipynb)

# Time Series Feature Extraction Library
## Intuitive time series feature extraction
This repository hosts the **TSFEL - Time Series Feature Extraction Library** python package. TSFEL assists researchers on exploratory feature extraction tasks on time series without requiring significant programming effort.

Users can interact with TSFEL using two methods:
##### Online
It does not requires installation as it relies on Google Colabs and a user interface provided by Google Sheets

##### Offline
Advanced users can take full potential of TSFEL by installing as a python package
```python
pip install tsfel
```

## Includes a comprehensive number of features
TSFEL is optimized for time series and **automatically extracts over 60 different features on the statistical, temporal and spectral domains.**

## Functionalities
* **Intuitive, fast deployment and reproducible**: interactive UI for feature selection and customization
* **Computational complexity evaluation**: estimate the computational effort before extracting features
* **Comprehensive documentation**: each feature extraction method has a detailed explanation
* **Unit tested**: we provide unit tests for each feature
* **Easily extended**: adding new features is easy and we encourage you to contribute with your custom features

## Get started
The code below extracts all the available features on an example dataset file.

```python
import tsfel
import pandas as pd

# load dataset
df = pd.read_csv('Dataset.txt')

# Retrieves a pre-defined feature configuration file to extract all available features
cfg = tsfel.get_features_by_domain()

# Extract features
X = tsfel.time_series_features_extractor(cfg, df)
```

## Available features

#### Statistical domain
| Features                   | Computational Cost |
|----------------------------|:------------------:|
| ECDF                       |          1         |
| ECDF Percentile            |          1         |
| ECDF Percentile Count      |          1         |
| Histogram                  |          1         |
| Interquartile range        |          1         |
| Kurtosis                   |          1         |
| Max                        |          1         |
| Mean                       |          1         |
| Mean absolute deviation    |          1         |
| Median                     |          1         |
| Median absolute deviation  |          1         |
| Min                        |          1         |
| Root mean square           |          1         |
| Skewness                   |          1         |
| Standard deviation         |          1         |
| Variance                   |          1         |


#### Temporal domain
| Features                   | Computational Cost |
|----------------------------|:------------------:|
| Absolute energy            |          1         |
| Area under the curve       |          1         |
| Autocorrelation            |          1         |
| Centroid                   |          1         |
| Entropy                    |          1         |
| Mean absolute diff         |          1         |
| Mean diff                  |          1         |
| Median absolute diff       |          1         |
| Median diff                |          1         |
| Negative turning points    |          1         |
| Peak to peak distance      |          1         |
| Positive turning points    |          1         |
| Signal distance            |          1         |
| Slope                      |          1         |
| Sum absolute diff          |          1         |
| Total energy               |          1         |
| Zero crossing rate         |          1         |
| Neighbourhood peaks        |          1         |


#### Spectral domain
| Features                          | Computational Cost |
|-----------------------------------|:------------------:|
| FFT mean coefficient              |          1         |
| Fundamental frequency             |          1         |
| Human range energy                |          2         |
| LPCC                              |          1         |
| MFCC                              |          1         |
| Max power spectrum                |          1         |
| Maximum frequency                 |          1         |
| Median frequency                  |          1         |
| Power bandwidth                   |          1         |
| Spectral centroid                 |          2         |
| Spectral decrease                 |          1         |
| Spectral distance                 |          1         |
| Spectral entropy                  |          1         |
| Spectral kurtosis                 |          2         |
| Spectral positive turning points  |          1         |
| Spectral roll-off                 |          1         |
| Spectral roll-on                  |          1         |
| Spectral skewness                 |          2         |
| Spectral slope                    |          1         |
| Spectral spread                   |          2         |
| Spectral variation                |          1         |
| Wavelet absolute mean             |          2         |
| Wavelet energy                    |          2         |
| Wavelet standard deviation        |          2         |
| Wavelet entropy                   |          2         |
| Wavelet variance                  |          2         |


## Citing
When using TSFEL please cite the following publication:

Barandas, Marília and Folgado, Duarte, et al. "*TSFEL: Time Series Feature Extraction Library.*" SoftwareX 11 (2020). [https://doi.org/10.1016/j.softx.2020.100456](https://doi.org/10.1016/j.softx.2020.100456)

## Acknowledgements
We would like to acknowledge the financial support obtained from the project Total Integrated and Predictive Manufacturing System Platform for Industry 4.0, co-funded by Portugal 2020, framed under the COMPETE 2020 (Operational Programme  Competitiveness and Internationalization) and European Regional Development Fund (ERDF) from European Union (EU), with operation code POCI-01-0247-FEDER-038436.


%prep
%autosetup -n tsfel-0.1.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-tsfel -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.5-1
- Package Spec generated