1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
%global _empty_manifest_terminate_build 0
Name: python-tslearn
Version: 0.5.3.2
Release: 1
Summary: A machine learning toolkit dedicated to time-series data
License: BSD-2-Clause
URL: http://tslearn.readthedocs.io/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/88/16/7cc705033e285af1468846c3e8e3ba70546e301c8fcb29c29ef22d66460f/tslearn-0.5.3.2.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-numba
Requires: python3-joblib
Requires: python3-pytest
%description
<!-- Our title -->
<div align="center">
<h3>tslearn </h3>
</div>
<!-- Short description -->
<p align="center">
The machine learning toolkit for time series analysis in Python
</p>
<!-- The badges -->
<p align="center">
<a href="https://badge.fury.io/py/tslearn">
<img alt="PyPI" src="https://badge.fury.io/py/tslearn.svg">
</a>
<a href="http://tslearn.readthedocs.io/en/stable/?badge=stable">
<img alt="Documentation" src="https://readthedocs.org/projects/tslearn/badge/?version=stable">
</a>
<a href="https://dev.azure.com/romaintavenard/tslearn/_build">
<img alt="Build (Azure Pipelines)" src="https://dev.azure.com/romaintavenard/tslearn/_apis/build/status/tslearn-team.tslearn?branchName=main">
</a>
<a href="https://codecov.io/gh/tslearn-team/tslearn">
<img alt="Codecov" src="https://codecov.io/gh/tslearn-team/tslearn/branch/main/graph/badge.svg">
</a>
<a href="https://pepy.tech/project/tslearn">
<img alt="Downloads" src="https://pepy.tech/badge/tslearn">
</a>
</p>
<!-- Draw horizontal rule -->
<hr>
<!-- Table of content -->
| Section | Description |
|-|-|
| [Installation](#installation) | Installing the dependencies and tslearn |
| [Getting started](#getting-started) | A quick introduction on how to use tslearn |
| [Available features](#available-features) | An extensive overview of tslearn's functionalities |
| [Documentation](#documentation) | A link to our API reference and a gallery of examples |
| [Contributing](#contributing) | A guide for heroes willing to contribute |
| [Citation](#referencing-tslearn) | A citation for tslearn for scholarly articles |
## Installation
There are different alternatives to install tslearn:
* PyPi: `python -m pip install tslearn`
* Conda: `conda install -c conda-forge tslearn`
* Git: `python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip`
In order for the installation to be successful, the required dependencies must be installed. For a more detailed guide on how to install tslearn, please see the [Documentation](https://tslearn.readthedocs.io/en/stable/?badge=stable#installation).
## Getting started
### 1. Getting the data in the right format
tslearn expects a time series dataset to be formatted as a 3D `numpy` array. The three dimensions correspond to the number of time series, the number of measurements per time series and the number of dimensions respectively (`n_ts, max_sz, d`). In order to get the data in the right format, different solutions exist:
* [You can use the utility functions such as `to_time_series_dataset`.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils)
* [You can convert from other popular time series toolkits in Python.](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)
* [You can load any of the UCR datasets in the required format.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets)
* [You can generate synthetic data using the `generators` module.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators)
It should further be noted that tslearn [supports variable-length timeseries](https://tslearn.readthedocs.io/en/stable/variablelength.html).
```python3
>>> from tslearn.utils import to_time_series_dataset
>>> my_first_time_series = [1, 3, 4, 2]
>>> my_second_time_series = [1, 2, 4, 2]
>>> my_third_time_series = [1, 2, 4, 2, 2]
>>> X = to_time_series_dataset([my_first_time_series,
my_second_time_series,
my_third_time_series])
>>> y = [0, 1, 1]
```
### 2. Data preprocessing and transformations
Optionally, tslearn has several utilities to preprocess the data. In order to facilitate the convergence of different algorithms, you can [scale time series](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing). Alternatively, in order to speed up training times, one can [resample](https://tslearn.readthedocs.io/en/stable/gen_modules/preprocessing/tslearn.preprocessing.TimeSeriesResampler.html#tslearn.preprocessing.TimeSeriesResampler) the data or apply a [piece-wise transformation](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise).
```python3
>>> from tslearn.preprocessing import TimeSeriesScalerMinMax
>>> X_scaled = TimeSeriesScalerMinMax().fit_transform(X)
>>> print(X_scaled)
[[[0.] [0.667] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [0.333]]]
```
### 3. Training a model
After getting the data in the right format, a model can be trained. Depending on the use case, tslearn supports different tasks: classification, clustering and regression. For an extensive overview of possibilities, check out our [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html).
```python3
>>> from tslearn.neighbors import KNeighborsTimeSeriesClassifier
>>> knn = KNeighborsTimeSeriesClassifier(n_neighbors=1)
>>> knn.fit(X_scaled, y)
>>> print(knn.predict(X_scaled))
[0 1 1]
```
As can be seen, the models in tslearn follow the same API as those of the well-known scikit-learn. Moreover, they are fully compatible with it, allowing to use different scikit-learn utilities such as [hyper-parameter tuning and pipelines](https://tslearn.readthedocs.io/en/stable/auto_examples/plot_knnts_sklearn.html#sphx-glr-auto-examples-plot-knnts-sklearn-py).
### 4. More analyses
tslearn further allows to perform all different types of analysis. Examples include [calculating barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) of a group of time series or calculate the distances between time series using a [variety of distance metrics](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.metrics.html#module-tslearn.metrics).
## Available features
| data | processing | clustering | classification | regression | metrics |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| [UCR Datasets](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets) | [Scaling](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing) | [TimeSeriesKMeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html#tslearn.clustering.TimeSeriesKMeans) | [KNN Classifier](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesClassifier.html#tslearn.neighbors.KNeighborsTimeSeriesClassifier) | [KNN Regressor](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesRegressor.html#tslearn.neighbors.KNeighborsTimeSeriesRegressor) | [Dynamic Time Warping](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.dtw.html#tslearn.metrics.dtw) |
| [Generators](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators) | [Piecewise](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise) | [KShape](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KShape.html#tslearn.clustering.KShape) | [TimeSeriesSVC](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVC.html#tslearn.svm.TimeSeriesSVC) | [TimeSeriesSVR](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVR.html#tslearn.svm.TimeSeriesSVR) | [Global Alignment Kernel](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.gak.html#tslearn.metrics.gak) |
| Conversion([1](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils), [2](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)) | | [KernelKmeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KernelKMeans.html#tslearn.clustering.KernelKMeans) | [LearningShapelets](https://tslearn.readthedocs.io/en/stable/gen_modules/shapelets/tslearn.shapelets.LearningShapelets.html) | [MLP](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.neural_network.html#module-tslearn.neural_network) | [Barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) |
| | | | [Early Classification](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.early_classification.html#module-tslearn.early_classification) | | [Matrix Profile](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.matrix_profile.html#module-tslearn.matrix_profile) |
## Documentation
The documentation is hosted at [readthedocs](http://tslearn.readthedocs.io/en/stable/index.html). It includes an [API](https://tslearn.readthedocs.io/en/stable/reference.html), [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html) and a [user guide](https://tslearn.readthedocs.io/en/stable/user_guide/userguide.html).
## Contributing
If you would like to contribute to `tslearn`, please have a look at [our contribution guidelines](CONTRIBUTING.md). A list of interesting TODO's can be found [here](https://github.com/tslearn-team/tslearn/issues?utf8=✓&q=is%3Aissue%20is%3Aopen%20label%3A%22new%20feature%22%20). **If you want other ML methods for time series to be added to this TODO list, do not hesitate to [open an issue](https://github.com/tslearn-team/tslearn/issues/new/choose)!**
## Referencing tslearn
If you use `tslearn` in a scientific publication, we would appreciate citations:
```bibtex
@article{JMLR:v21:20-091,
author = {Romain Tavenard and Johann Faouzi and Gilles Vandewiele and
Felix Divo and Guillaume Androz and Chester Holtz and
Marie Payne and Roman Yurchak and Marc Ru{\ss}wurm and
Kushal Kolar and Eli Woods},
title = {Tslearn, A Machine Learning Toolkit for Time Series Data},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {118},
pages = {1-6},
url = {http://jmlr.org/papers/v21/20-091.html}
}
```
#### Acknowledgments
Authors would like to thank Mathieu Blondel for providing code for [Kernel k-means](https://gist.github.com/mblondel/6230787) and [Soft-DTW](https://github.com/mblondel/soft-dtw).
%package -n python3-tslearn
Summary: A machine learning toolkit dedicated to time-series data
Provides: python-tslearn
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-tslearn
<!-- Our title -->
<div align="center">
<h3>tslearn </h3>
</div>
<!-- Short description -->
<p align="center">
The machine learning toolkit for time series analysis in Python
</p>
<!-- The badges -->
<p align="center">
<a href="https://badge.fury.io/py/tslearn">
<img alt="PyPI" src="https://badge.fury.io/py/tslearn.svg">
</a>
<a href="http://tslearn.readthedocs.io/en/stable/?badge=stable">
<img alt="Documentation" src="https://readthedocs.org/projects/tslearn/badge/?version=stable">
</a>
<a href="https://dev.azure.com/romaintavenard/tslearn/_build">
<img alt="Build (Azure Pipelines)" src="https://dev.azure.com/romaintavenard/tslearn/_apis/build/status/tslearn-team.tslearn?branchName=main">
</a>
<a href="https://codecov.io/gh/tslearn-team/tslearn">
<img alt="Codecov" src="https://codecov.io/gh/tslearn-team/tslearn/branch/main/graph/badge.svg">
</a>
<a href="https://pepy.tech/project/tslearn">
<img alt="Downloads" src="https://pepy.tech/badge/tslearn">
</a>
</p>
<!-- Draw horizontal rule -->
<hr>
<!-- Table of content -->
| Section | Description |
|-|-|
| [Installation](#installation) | Installing the dependencies and tslearn |
| [Getting started](#getting-started) | A quick introduction on how to use tslearn |
| [Available features](#available-features) | An extensive overview of tslearn's functionalities |
| [Documentation](#documentation) | A link to our API reference and a gallery of examples |
| [Contributing](#contributing) | A guide for heroes willing to contribute |
| [Citation](#referencing-tslearn) | A citation for tslearn for scholarly articles |
## Installation
There are different alternatives to install tslearn:
* PyPi: `python -m pip install tslearn`
* Conda: `conda install -c conda-forge tslearn`
* Git: `python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip`
In order for the installation to be successful, the required dependencies must be installed. For a more detailed guide on how to install tslearn, please see the [Documentation](https://tslearn.readthedocs.io/en/stable/?badge=stable#installation).
## Getting started
### 1. Getting the data in the right format
tslearn expects a time series dataset to be formatted as a 3D `numpy` array. The three dimensions correspond to the number of time series, the number of measurements per time series and the number of dimensions respectively (`n_ts, max_sz, d`). In order to get the data in the right format, different solutions exist:
* [You can use the utility functions such as `to_time_series_dataset`.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils)
* [You can convert from other popular time series toolkits in Python.](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)
* [You can load any of the UCR datasets in the required format.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets)
* [You can generate synthetic data using the `generators` module.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators)
It should further be noted that tslearn [supports variable-length timeseries](https://tslearn.readthedocs.io/en/stable/variablelength.html).
```python3
>>> from tslearn.utils import to_time_series_dataset
>>> my_first_time_series = [1, 3, 4, 2]
>>> my_second_time_series = [1, 2, 4, 2]
>>> my_third_time_series = [1, 2, 4, 2, 2]
>>> X = to_time_series_dataset([my_first_time_series,
my_second_time_series,
my_third_time_series])
>>> y = [0, 1, 1]
```
### 2. Data preprocessing and transformations
Optionally, tslearn has several utilities to preprocess the data. In order to facilitate the convergence of different algorithms, you can [scale time series](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing). Alternatively, in order to speed up training times, one can [resample](https://tslearn.readthedocs.io/en/stable/gen_modules/preprocessing/tslearn.preprocessing.TimeSeriesResampler.html#tslearn.preprocessing.TimeSeriesResampler) the data or apply a [piece-wise transformation](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise).
```python3
>>> from tslearn.preprocessing import TimeSeriesScalerMinMax
>>> X_scaled = TimeSeriesScalerMinMax().fit_transform(X)
>>> print(X_scaled)
[[[0.] [0.667] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [0.333]]]
```
### 3. Training a model
After getting the data in the right format, a model can be trained. Depending on the use case, tslearn supports different tasks: classification, clustering and regression. For an extensive overview of possibilities, check out our [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html).
```python3
>>> from tslearn.neighbors import KNeighborsTimeSeriesClassifier
>>> knn = KNeighborsTimeSeriesClassifier(n_neighbors=1)
>>> knn.fit(X_scaled, y)
>>> print(knn.predict(X_scaled))
[0 1 1]
```
As can be seen, the models in tslearn follow the same API as those of the well-known scikit-learn. Moreover, they are fully compatible with it, allowing to use different scikit-learn utilities such as [hyper-parameter tuning and pipelines](https://tslearn.readthedocs.io/en/stable/auto_examples/plot_knnts_sklearn.html#sphx-glr-auto-examples-plot-knnts-sklearn-py).
### 4. More analyses
tslearn further allows to perform all different types of analysis. Examples include [calculating barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) of a group of time series or calculate the distances between time series using a [variety of distance metrics](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.metrics.html#module-tslearn.metrics).
## Available features
| data | processing | clustering | classification | regression | metrics |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| [UCR Datasets](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets) | [Scaling](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing) | [TimeSeriesKMeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html#tslearn.clustering.TimeSeriesKMeans) | [KNN Classifier](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesClassifier.html#tslearn.neighbors.KNeighborsTimeSeriesClassifier) | [KNN Regressor](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesRegressor.html#tslearn.neighbors.KNeighborsTimeSeriesRegressor) | [Dynamic Time Warping](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.dtw.html#tslearn.metrics.dtw) |
| [Generators](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators) | [Piecewise](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise) | [KShape](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KShape.html#tslearn.clustering.KShape) | [TimeSeriesSVC](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVC.html#tslearn.svm.TimeSeriesSVC) | [TimeSeriesSVR](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVR.html#tslearn.svm.TimeSeriesSVR) | [Global Alignment Kernel](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.gak.html#tslearn.metrics.gak) |
| Conversion([1](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils), [2](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)) | | [KernelKmeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KernelKMeans.html#tslearn.clustering.KernelKMeans) | [LearningShapelets](https://tslearn.readthedocs.io/en/stable/gen_modules/shapelets/tslearn.shapelets.LearningShapelets.html) | [MLP](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.neural_network.html#module-tslearn.neural_network) | [Barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) |
| | | | [Early Classification](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.early_classification.html#module-tslearn.early_classification) | | [Matrix Profile](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.matrix_profile.html#module-tslearn.matrix_profile) |
## Documentation
The documentation is hosted at [readthedocs](http://tslearn.readthedocs.io/en/stable/index.html). It includes an [API](https://tslearn.readthedocs.io/en/stable/reference.html), [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html) and a [user guide](https://tslearn.readthedocs.io/en/stable/user_guide/userguide.html).
## Contributing
If you would like to contribute to `tslearn`, please have a look at [our contribution guidelines](CONTRIBUTING.md). A list of interesting TODO's can be found [here](https://github.com/tslearn-team/tslearn/issues?utf8=✓&q=is%3Aissue%20is%3Aopen%20label%3A%22new%20feature%22%20). **If you want other ML methods for time series to be added to this TODO list, do not hesitate to [open an issue](https://github.com/tslearn-team/tslearn/issues/new/choose)!**
## Referencing tslearn
If you use `tslearn` in a scientific publication, we would appreciate citations:
```bibtex
@article{JMLR:v21:20-091,
author = {Romain Tavenard and Johann Faouzi and Gilles Vandewiele and
Felix Divo and Guillaume Androz and Chester Holtz and
Marie Payne and Roman Yurchak and Marc Ru{\ss}wurm and
Kushal Kolar and Eli Woods},
title = {Tslearn, A Machine Learning Toolkit for Time Series Data},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {118},
pages = {1-6},
url = {http://jmlr.org/papers/v21/20-091.html}
}
```
#### Acknowledgments
Authors would like to thank Mathieu Blondel for providing code for [Kernel k-means](https://gist.github.com/mblondel/6230787) and [Soft-DTW](https://github.com/mblondel/soft-dtw).
%package help
Summary: Development documents and examples for tslearn
Provides: python3-tslearn-doc
%description help
<!-- Our title -->
<div align="center">
<h3>tslearn </h3>
</div>
<!-- Short description -->
<p align="center">
The machine learning toolkit for time series analysis in Python
</p>
<!-- The badges -->
<p align="center">
<a href="https://badge.fury.io/py/tslearn">
<img alt="PyPI" src="https://badge.fury.io/py/tslearn.svg">
</a>
<a href="http://tslearn.readthedocs.io/en/stable/?badge=stable">
<img alt="Documentation" src="https://readthedocs.org/projects/tslearn/badge/?version=stable">
</a>
<a href="https://dev.azure.com/romaintavenard/tslearn/_build">
<img alt="Build (Azure Pipelines)" src="https://dev.azure.com/romaintavenard/tslearn/_apis/build/status/tslearn-team.tslearn?branchName=main">
</a>
<a href="https://codecov.io/gh/tslearn-team/tslearn">
<img alt="Codecov" src="https://codecov.io/gh/tslearn-team/tslearn/branch/main/graph/badge.svg">
</a>
<a href="https://pepy.tech/project/tslearn">
<img alt="Downloads" src="https://pepy.tech/badge/tslearn">
</a>
</p>
<!-- Draw horizontal rule -->
<hr>
<!-- Table of content -->
| Section | Description |
|-|-|
| [Installation](#installation) | Installing the dependencies and tslearn |
| [Getting started](#getting-started) | A quick introduction on how to use tslearn |
| [Available features](#available-features) | An extensive overview of tslearn's functionalities |
| [Documentation](#documentation) | A link to our API reference and a gallery of examples |
| [Contributing](#contributing) | A guide for heroes willing to contribute |
| [Citation](#referencing-tslearn) | A citation for tslearn for scholarly articles |
## Installation
There are different alternatives to install tslearn:
* PyPi: `python -m pip install tslearn`
* Conda: `conda install -c conda-forge tslearn`
* Git: `python -m pip install https://github.com/tslearn-team/tslearn/archive/main.zip`
In order for the installation to be successful, the required dependencies must be installed. For a more detailed guide on how to install tslearn, please see the [Documentation](https://tslearn.readthedocs.io/en/stable/?badge=stable#installation).
## Getting started
### 1. Getting the data in the right format
tslearn expects a time series dataset to be formatted as a 3D `numpy` array. The three dimensions correspond to the number of time series, the number of measurements per time series and the number of dimensions respectively (`n_ts, max_sz, d`). In order to get the data in the right format, different solutions exist:
* [You can use the utility functions such as `to_time_series_dataset`.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils)
* [You can convert from other popular time series toolkits in Python.](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)
* [You can load any of the UCR datasets in the required format.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets)
* [You can generate synthetic data using the `generators` module.](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators)
It should further be noted that tslearn [supports variable-length timeseries](https://tslearn.readthedocs.io/en/stable/variablelength.html).
```python3
>>> from tslearn.utils import to_time_series_dataset
>>> my_first_time_series = [1, 3, 4, 2]
>>> my_second_time_series = [1, 2, 4, 2]
>>> my_third_time_series = [1, 2, 4, 2, 2]
>>> X = to_time_series_dataset([my_first_time_series,
my_second_time_series,
my_third_time_series])
>>> y = [0, 1, 1]
```
### 2. Data preprocessing and transformations
Optionally, tslearn has several utilities to preprocess the data. In order to facilitate the convergence of different algorithms, you can [scale time series](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing). Alternatively, in order to speed up training times, one can [resample](https://tslearn.readthedocs.io/en/stable/gen_modules/preprocessing/tslearn.preprocessing.TimeSeriesResampler.html#tslearn.preprocessing.TimeSeriesResampler) the data or apply a [piece-wise transformation](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise).
```python3
>>> from tslearn.preprocessing import TimeSeriesScalerMinMax
>>> X_scaled = TimeSeriesScalerMinMax().fit_transform(X)
>>> print(X_scaled)
[[[0.] [0.667] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [nan]]
[[0.] [0.333] [1.] [0.333] [0.333]]]
```
### 3. Training a model
After getting the data in the right format, a model can be trained. Depending on the use case, tslearn supports different tasks: classification, clustering and regression. For an extensive overview of possibilities, check out our [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html).
```python3
>>> from tslearn.neighbors import KNeighborsTimeSeriesClassifier
>>> knn = KNeighborsTimeSeriesClassifier(n_neighbors=1)
>>> knn.fit(X_scaled, y)
>>> print(knn.predict(X_scaled))
[0 1 1]
```
As can be seen, the models in tslearn follow the same API as those of the well-known scikit-learn. Moreover, they are fully compatible with it, allowing to use different scikit-learn utilities such as [hyper-parameter tuning and pipelines](https://tslearn.readthedocs.io/en/stable/auto_examples/plot_knnts_sklearn.html#sphx-glr-auto-examples-plot-knnts-sklearn-py).
### 4. More analyses
tslearn further allows to perform all different types of analysis. Examples include [calculating barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) of a group of time series or calculate the distances between time series using a [variety of distance metrics](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.metrics.html#module-tslearn.metrics).
## Available features
| data | processing | clustering | classification | regression | metrics |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| [UCR Datasets](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.datasets.html#module-tslearn.datasets) | [Scaling](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.preprocessing.html#module-tslearn.preprocessing) | [TimeSeriesKMeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html#tslearn.clustering.TimeSeriesKMeans) | [KNN Classifier](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesClassifier.html#tslearn.neighbors.KNeighborsTimeSeriesClassifier) | [KNN Regressor](https://tslearn.readthedocs.io/en/stable/gen_modules/neighbors/tslearn.neighbors.KNeighborsTimeSeriesRegressor.html#tslearn.neighbors.KNeighborsTimeSeriesRegressor) | [Dynamic Time Warping](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.dtw.html#tslearn.metrics.dtw) |
| [Generators](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.generators.html#module-tslearn.generators) | [Piecewise](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.piecewise.html#module-tslearn.piecewise) | [KShape](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KShape.html#tslearn.clustering.KShape) | [TimeSeriesSVC](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVC.html#tslearn.svm.TimeSeriesSVC) | [TimeSeriesSVR](https://tslearn.readthedocs.io/en/stable/gen_modules/svm/tslearn.svm.TimeSeriesSVR.html#tslearn.svm.TimeSeriesSVR) | [Global Alignment Kernel](https://tslearn.readthedocs.io/en/stable/gen_modules/metrics/tslearn.metrics.gak.html#tslearn.metrics.gak) |
| Conversion([1](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.utils.html#module-tslearn.utils), [2](https://tslearn.readthedocs.io/en/stable/integration_other_software.html)) | | [KernelKmeans](https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.KernelKMeans.html#tslearn.clustering.KernelKMeans) | [LearningShapelets](https://tslearn.readthedocs.io/en/stable/gen_modules/shapelets/tslearn.shapelets.LearningShapelets.html) | [MLP](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.neural_network.html#module-tslearn.neural_network) | [Barycenters](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.barycenters.html#module-tslearn.barycenters) |
| | | | [Early Classification](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.early_classification.html#module-tslearn.early_classification) | | [Matrix Profile](https://tslearn.readthedocs.io/en/stable/gen_modules/tslearn.matrix_profile.html#module-tslearn.matrix_profile) |
## Documentation
The documentation is hosted at [readthedocs](http://tslearn.readthedocs.io/en/stable/index.html). It includes an [API](https://tslearn.readthedocs.io/en/stable/reference.html), [gallery of examples](https://tslearn.readthedocs.io/en/stable/auto_examples/index.html) and a [user guide](https://tslearn.readthedocs.io/en/stable/user_guide/userguide.html).
## Contributing
If you would like to contribute to `tslearn`, please have a look at [our contribution guidelines](CONTRIBUTING.md). A list of interesting TODO's can be found [here](https://github.com/tslearn-team/tslearn/issues?utf8=✓&q=is%3Aissue%20is%3Aopen%20label%3A%22new%20feature%22%20). **If you want other ML methods for time series to be added to this TODO list, do not hesitate to [open an issue](https://github.com/tslearn-team/tslearn/issues/new/choose)!**
## Referencing tslearn
If you use `tslearn` in a scientific publication, we would appreciate citations:
```bibtex
@article{JMLR:v21:20-091,
author = {Romain Tavenard and Johann Faouzi and Gilles Vandewiele and
Felix Divo and Guillaume Androz and Chester Holtz and
Marie Payne and Roman Yurchak and Marc Ru{\ss}wurm and
Kushal Kolar and Eli Woods},
title = {Tslearn, A Machine Learning Toolkit for Time Series Data},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {118},
pages = {1-6},
url = {http://jmlr.org/papers/v21/20-091.html}
}
```
#### Acknowledgments
Authors would like to thank Mathieu Blondel for providing code for [Kernel k-means](https://gist.github.com/mblondel/6230787) and [Soft-DTW](https://github.com/mblondel/soft-dtw).
%prep
%autosetup -n tslearn-0.5.3.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-tslearn -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.3.2-1
- Package Spec generated
|