1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
|
%global _empty_manifest_terminate_build 0
Name: python-ttcrpy
Version: 1.2.1
Release: 1
Summary: Code to perform raytracing for geophysical applications
License: GNU General Public License v3 or later (GPLv3+)
URL: https://pypi.org/project/ttcrpy/
Source0: https://mirrors.aliyun.com/pypi/web/packages/a8/ad/ea3a55f22959ad70054d0d7ed5adfb853f190db10b5e9bf3532569548d86/ttcrpy-1.2.1.tar.gz
%description
[](https://pypi.org/project/ttcrpy/)
[](./01_LICENSE.txt)
[](https://doi.org/10.5281/zenodo.1162725)
[](https://ci.appveyor.com/project/bernard-giroux/ttcr)
[](https://ttcrpy.readthedocs.io/en/latest/?badge=latest)
[](https://pepy.tech/project/ttcrpy)
This repo contains C++ and python codes for raytracing on regular and unstructured meshes.
Matlab wrappers are provided as well.
- [Python package](#heading)
- [Stand alone command-line programs](#heading)
- [Matlab mex files](#heading)
- [References](#heading)
<!-- toc -->
## Python package
`ttcrpy` is a package for computing traveltimes and raytracing that was
developed with geophysical applications in mind, e.g. ray-based seismic/GPR
tomography and microseismic event location (joint hypocenter-velocity
inversion). The package contains code to perform computation on 2D and 3D
rectilinear grids, as well as 2D triangular and 3D tetrahedral meshes. Three
different algorithms have been implemented: the Fast-Sweeping Method, the
Shortest-Path Method, and the Dynamic Shortest-Path Method. Calculations can
be run in parallel on a multi-core machine.
The core computing code is written in C++, and has been wrapped with cython.
Documentation can be found on [Read The Docs](https://ttcrpy.readthedocs.io/)
If you use `ttcrpy`, please cite
[Giroux B. 2021. ttcrpy: A Python package for traveltime computation and raytracing.
SoftwareX, vol. 16, 100834. doi: 10.1016/j.softx.2021.100834](https://www.sciencedirect.com/science/article/pii/S2352711021001217)
## Stand-alone command-line programs
There are three programs that can be called from the command line:
- `ttcr2d` : raytracing on planar 2D meshes
- `ttcr2ds` : raytracing on undulated surfaces
- `ttcr3d` : raytracing in 3D
See [documentation](https://github.com/groupeLIAMG/ttcr/blob/master/docs/command_line.md) for
command-line programs options and file formats.
### Examples
Look at the files in the examples directory for some samples.
### Compiling
The programs are coded in C++ and follow the C++11 standard. You must have VTK
(http://vtk.org) installed on your system, to benefit from full functionalities.
Files from the eigen3 (http://eigen.tuxfamily.org) and boost
(http://www.boost.org) libraries are distributed with the source to facilitate
compilation. These codes were compiled and tested on macs with the default
compiler (clang). They were also tested to some extent under linux with g++
version 4.8.
## Matlab wrappers
To compile the mexfiles, you will need:
- a C++ compiler that conforms to the C++11 standard
- the source codes of the ttcr package
On my OS X machine, I use this command to compile from a terminal:
```
MATLAB=/Applications/MATLAB_R2014a.app
$MATLAB/bin/mex -O CXXFLAGS='$CXXFLAGS -std=c++11 -stdlib=libc++' \
LDFLAGS='$LDFLAGS -std=c++11 -stdlib=libc++' -largeArrayDims -v \
-I$HOME/src/ttcr/ttcr -I$HOME/src/ttcr/boost_1_81_0 \
-I$HOME/src/ttcr/eigen-3.4.0 grid2dunsp_mex.cpp
```
3D classes must be compiled with `verbose.cpp` in the list of source files, i.e.
```
$MATLAB/bin/mex -O CXXFLAGS='$CXXFLAGS -std=c++11 -stdlib=libc++' \
LDFLAGS='$LDFLAGS -std=c++11 -stdlib=libc++' -largeArrayDims -v \
-I$HOME/src/ttcr/ttcr -I$HOME/src/ttcr/boost_1_81_0 \
-I$HOME/src/ttcr/eigen-3.4.0 grid3dunfs_mex.cpp verbose.cpp
```
On a windows machine with intel compiler installed, I could compile it from the matlab prompt with:
```
mex -v -O COMPFLAGS='$COMPFLAGS /Qstd=c++11' -largeArrayDims -I../ttcr -I../boost_1_81_0 -I../eigen-3.4.0 grid2dunsp_mex.cpp
```
Unfortunately, I cannot offer extensive support for compiling on other platforms, especially windows variants.
Please report bugs to https://github.com/groupeLIAMG/ttcr/issues
## References
```
@article{doi:10.1111/1365-2478.12930,
author = {Nasr, Maher and Giroux, Bernard and Dupuis, J. Christian},
title = {A hybrid approach to compute seismic travel times in three-dimensional tetrahedral meshes},
journal = {Geophysical Prospecting},
volume = {n/a},
number = {n/a},
pages = {},
keywords = {Travel time, Seismic modelling, Ray tracing, Seismics, Computing aspects},
doi = {10.1111/1365-2478.12930},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2478.12930},
}
@inbook{nasr18,
author = { Maher Nasr and Bernard Giroux and J. Christian Dupuis },
title = {An optimized approach to compute traveltimes in 3D unstructured meshes},
booktitle = {SEG Technical Program Expanded Abstracts 2018},
chapter = {},
pages = {5073-5077},
year = {2018},
doi = {10.1190/segam2018-2997918.1},
URL = {https://library.seg.org/doi/abs/10.1190/segam2018-2997918.1},
eprint = {https://library.seg.org/doi/pdf/10.1190/segam2018-2997918.1}
}
@InProceedings{giroux14,
Title = {Comparison of grid-based methods for raytracing on unstructured meshes},
Author = {Bernard Giroux},
Booktitle = {SEG Technical Program Expanded Abstracts},
Year = {2014},
Pages = {3388-3392},
Chapter = {649},
DOI = {10.1190/segam2014-1197.1},
Eprint = {http://library.seg.org/doi/pdf/10.1190/segam2014-1197.1},
URL = {http://dx.doi.org/10.1190/segam2014-1197.1}
}
@ARTICLE{giroux13,
author = {Bernard Giroux and Beno\^{\i}t Larouche},
title = {Task-parallel implementation of {3D} shortest path raytracing for
geophysical applications},
journal = {Computers & Geosciences},
year = {2013},
volume = {54},
pages = {130--141},
number = {0},
doi = {10.1016/j.cageo.2012.12.005}
url = {http://dx.doi.org/10.1016/j.cageo.2012.12.005}
}
@INPROCEEDINGS{giroux13b,
author = {Bernard Giroux},
title = {Shortest path raytracing on tetrahedral meshes},
booktitle = {75$^{th}$ EAGE Conference \& Exhibition},
year = {2013},
address = {London},
organization = {EAGE},
doi = {10.3997/2214-4609.20130236}
url = {http://dx.doi.org/10.3997/2214-4609.20130236}
}
@ARTICLE{lelievre11,
author = {Leli\`evre, Peter G. and Farquharson, Colin G. and Hurich, Charles A.},
title = {Computing first-arrival seismic traveltimes on unstructured 3-{D}
tetrahedral grids using the Fast Marching Method},
journal = {Geophysical Journal International},
year = {2011},
volume = {184},
pages = {885-896},
number = {2},
doi = {10.1111/j.1365-246X.2010.04880.x}
url = {http://dx.doi.org/10.1111/j.1365-246X.2010.04880.x}
}
@ARTICLE{qian07,
author = {Qian, Jianliang and Zhang, Yong-Tao and Zhao, Hong-Kai},
title = {Fast Sweeping Methods for Eikonal Equations on Triangular Meshes},
journal = {SIAM Journal on Numerical Analysis},
year = {2007},
volume = {45},
pages = {83--107},
number = {1},
doi = {10.1137/050627083},
publisher = {Society for Industrial and Applied Mathematics},
url = {http://www.jstor.org/stable/40232919}
}
@Article{zhang06,
Title = {High Order Fast Sweeping Methods for Static {H}amilton–{J}acobi Equations},
Author = {Yong-Tao Zhang and Hong-Kai Zhao and Jianliang Qian},
Journal = {Journal of Scientific Computing},
Year = {2006},
Number = {1},
Pages = {25--56},
Volume = {29},
DOI = {10.1007/s10915-005-9014-3},
URL = {http://dx.doi.org/10.1007/s10915-005-9014-3}
}
@Article{zhao05,
Title = {A Fast Sweeping Method for Eikonal Equations},
Author = {Zhao, Hongkai},
Journal = {Mathematics of Computation},
Year = {2005},
Month = apr,
Number = {250},
Pages = {603--627},
Volume = {74},
Publisher = {American Mathematical Society},
URL = {http://www.jstor.org/stable/4100081}
}
```
%package -n python3-ttcrpy
Summary: Code to perform raytracing for geophysical applications
Provides: python-ttcrpy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-ttcrpy
[](https://pypi.org/project/ttcrpy/)
[](./01_LICENSE.txt)
[](https://doi.org/10.5281/zenodo.1162725)
[](https://ci.appveyor.com/project/bernard-giroux/ttcr)
[](https://ttcrpy.readthedocs.io/en/latest/?badge=latest)
[](https://pepy.tech/project/ttcrpy)
This repo contains C++ and python codes for raytracing on regular and unstructured meshes.
Matlab wrappers are provided as well.
- [Python package](#heading)
- [Stand alone command-line programs](#heading)
- [Matlab mex files](#heading)
- [References](#heading)
<!-- toc -->
## Python package
`ttcrpy` is a package for computing traveltimes and raytracing that was
developed with geophysical applications in mind, e.g. ray-based seismic/GPR
tomography and microseismic event location (joint hypocenter-velocity
inversion). The package contains code to perform computation on 2D and 3D
rectilinear grids, as well as 2D triangular and 3D tetrahedral meshes. Three
different algorithms have been implemented: the Fast-Sweeping Method, the
Shortest-Path Method, and the Dynamic Shortest-Path Method. Calculations can
be run in parallel on a multi-core machine.
The core computing code is written in C++, and has been wrapped with cython.
Documentation can be found on [Read The Docs](https://ttcrpy.readthedocs.io/)
If you use `ttcrpy`, please cite
[Giroux B. 2021. ttcrpy: A Python package for traveltime computation and raytracing.
SoftwareX, vol. 16, 100834. doi: 10.1016/j.softx.2021.100834](https://www.sciencedirect.com/science/article/pii/S2352711021001217)
## Stand-alone command-line programs
There are three programs that can be called from the command line:
- `ttcr2d` : raytracing on planar 2D meshes
- `ttcr2ds` : raytracing on undulated surfaces
- `ttcr3d` : raytracing in 3D
See [documentation](https://github.com/groupeLIAMG/ttcr/blob/master/docs/command_line.md) for
command-line programs options and file formats.
### Examples
Look at the files in the examples directory for some samples.
### Compiling
The programs are coded in C++ and follow the C++11 standard. You must have VTK
(http://vtk.org) installed on your system, to benefit from full functionalities.
Files from the eigen3 (http://eigen.tuxfamily.org) and boost
(http://www.boost.org) libraries are distributed with the source to facilitate
compilation. These codes were compiled and tested on macs with the default
compiler (clang). They were also tested to some extent under linux with g++
version 4.8.
## Matlab wrappers
To compile the mexfiles, you will need:
- a C++ compiler that conforms to the C++11 standard
- the source codes of the ttcr package
On my OS X machine, I use this command to compile from a terminal:
```
MATLAB=/Applications/MATLAB_R2014a.app
$MATLAB/bin/mex -O CXXFLAGS='$CXXFLAGS -std=c++11 -stdlib=libc++' \
LDFLAGS='$LDFLAGS -std=c++11 -stdlib=libc++' -largeArrayDims -v \
-I$HOME/src/ttcr/ttcr -I$HOME/src/ttcr/boost_1_81_0 \
-I$HOME/src/ttcr/eigen-3.4.0 grid2dunsp_mex.cpp
```
3D classes must be compiled with `verbose.cpp` in the list of source files, i.e.
```
$MATLAB/bin/mex -O CXXFLAGS='$CXXFLAGS -std=c++11 -stdlib=libc++' \
LDFLAGS='$LDFLAGS -std=c++11 -stdlib=libc++' -largeArrayDims -v \
-I$HOME/src/ttcr/ttcr -I$HOME/src/ttcr/boost_1_81_0 \
-I$HOME/src/ttcr/eigen-3.4.0 grid3dunfs_mex.cpp verbose.cpp
```
On a windows machine with intel compiler installed, I could compile it from the matlab prompt with:
```
mex -v -O COMPFLAGS='$COMPFLAGS /Qstd=c++11' -largeArrayDims -I../ttcr -I../boost_1_81_0 -I../eigen-3.4.0 grid2dunsp_mex.cpp
```
Unfortunately, I cannot offer extensive support for compiling on other platforms, especially windows variants.
Please report bugs to https://github.com/groupeLIAMG/ttcr/issues
## References
```
@article{doi:10.1111/1365-2478.12930,
author = {Nasr, Maher and Giroux, Bernard and Dupuis, J. Christian},
title = {A hybrid approach to compute seismic travel times in three-dimensional tetrahedral meshes},
journal = {Geophysical Prospecting},
volume = {n/a},
number = {n/a},
pages = {},
keywords = {Travel time, Seismic modelling, Ray tracing, Seismics, Computing aspects},
doi = {10.1111/1365-2478.12930},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2478.12930},
}
@inbook{nasr18,
author = { Maher Nasr and Bernard Giroux and J. Christian Dupuis },
title = {An optimized approach to compute traveltimes in 3D unstructured meshes},
booktitle = {SEG Technical Program Expanded Abstracts 2018},
chapter = {},
pages = {5073-5077},
year = {2018},
doi = {10.1190/segam2018-2997918.1},
URL = {https://library.seg.org/doi/abs/10.1190/segam2018-2997918.1},
eprint = {https://library.seg.org/doi/pdf/10.1190/segam2018-2997918.1}
}
@InProceedings{giroux14,
Title = {Comparison of grid-based methods for raytracing on unstructured meshes},
Author = {Bernard Giroux},
Booktitle = {SEG Technical Program Expanded Abstracts},
Year = {2014},
Pages = {3388-3392},
Chapter = {649},
DOI = {10.1190/segam2014-1197.1},
Eprint = {http://library.seg.org/doi/pdf/10.1190/segam2014-1197.1},
URL = {http://dx.doi.org/10.1190/segam2014-1197.1}
}
@ARTICLE{giroux13,
author = {Bernard Giroux and Beno\^{\i}t Larouche},
title = {Task-parallel implementation of {3D} shortest path raytracing for
geophysical applications},
journal = {Computers & Geosciences},
year = {2013},
volume = {54},
pages = {130--141},
number = {0},
doi = {10.1016/j.cageo.2012.12.005}
url = {http://dx.doi.org/10.1016/j.cageo.2012.12.005}
}
@INPROCEEDINGS{giroux13b,
author = {Bernard Giroux},
title = {Shortest path raytracing on tetrahedral meshes},
booktitle = {75$^{th}$ EAGE Conference \& Exhibition},
year = {2013},
address = {London},
organization = {EAGE},
doi = {10.3997/2214-4609.20130236}
url = {http://dx.doi.org/10.3997/2214-4609.20130236}
}
@ARTICLE{lelievre11,
author = {Leli\`evre, Peter G. and Farquharson, Colin G. and Hurich, Charles A.},
title = {Computing first-arrival seismic traveltimes on unstructured 3-{D}
tetrahedral grids using the Fast Marching Method},
journal = {Geophysical Journal International},
year = {2011},
volume = {184},
pages = {885-896},
number = {2},
doi = {10.1111/j.1365-246X.2010.04880.x}
url = {http://dx.doi.org/10.1111/j.1365-246X.2010.04880.x}
}
@ARTICLE{qian07,
author = {Qian, Jianliang and Zhang, Yong-Tao and Zhao, Hong-Kai},
title = {Fast Sweeping Methods for Eikonal Equations on Triangular Meshes},
journal = {SIAM Journal on Numerical Analysis},
year = {2007},
volume = {45},
pages = {83--107},
number = {1},
doi = {10.1137/050627083},
publisher = {Society for Industrial and Applied Mathematics},
url = {http://www.jstor.org/stable/40232919}
}
@Article{zhang06,
Title = {High Order Fast Sweeping Methods for Static {H}amilton–{J}acobi Equations},
Author = {Yong-Tao Zhang and Hong-Kai Zhao and Jianliang Qian},
Journal = {Journal of Scientific Computing},
Year = {2006},
Number = {1},
Pages = {25--56},
Volume = {29},
DOI = {10.1007/s10915-005-9014-3},
URL = {http://dx.doi.org/10.1007/s10915-005-9014-3}
}
@Article{zhao05,
Title = {A Fast Sweeping Method for Eikonal Equations},
Author = {Zhao, Hongkai},
Journal = {Mathematics of Computation},
Year = {2005},
Month = apr,
Number = {250},
Pages = {603--627},
Volume = {74},
Publisher = {American Mathematical Society},
URL = {http://www.jstor.org/stable/4100081}
}
```
%package help
Summary: Development documents and examples for ttcrpy
Provides: python3-ttcrpy-doc
%description help
[](https://pypi.org/project/ttcrpy/)
[](./01_LICENSE.txt)
[](https://doi.org/10.5281/zenodo.1162725)
[](https://ci.appveyor.com/project/bernard-giroux/ttcr)
[](https://ttcrpy.readthedocs.io/en/latest/?badge=latest)
[](https://pepy.tech/project/ttcrpy)
This repo contains C++ and python codes for raytracing on regular and unstructured meshes.
Matlab wrappers are provided as well.
- [Python package](#heading)
- [Stand alone command-line programs](#heading)
- [Matlab mex files](#heading)
- [References](#heading)
<!-- toc -->
## Python package
`ttcrpy` is a package for computing traveltimes and raytracing that was
developed with geophysical applications in mind, e.g. ray-based seismic/GPR
tomography and microseismic event location (joint hypocenter-velocity
inversion). The package contains code to perform computation on 2D and 3D
rectilinear grids, as well as 2D triangular and 3D tetrahedral meshes. Three
different algorithms have been implemented: the Fast-Sweeping Method, the
Shortest-Path Method, and the Dynamic Shortest-Path Method. Calculations can
be run in parallel on a multi-core machine.
The core computing code is written in C++, and has been wrapped with cython.
Documentation can be found on [Read The Docs](https://ttcrpy.readthedocs.io/)
If you use `ttcrpy`, please cite
[Giroux B. 2021. ttcrpy: A Python package for traveltime computation and raytracing.
SoftwareX, vol. 16, 100834. doi: 10.1016/j.softx.2021.100834](https://www.sciencedirect.com/science/article/pii/S2352711021001217)
## Stand-alone command-line programs
There are three programs that can be called from the command line:
- `ttcr2d` : raytracing on planar 2D meshes
- `ttcr2ds` : raytracing on undulated surfaces
- `ttcr3d` : raytracing in 3D
See [documentation](https://github.com/groupeLIAMG/ttcr/blob/master/docs/command_line.md) for
command-line programs options and file formats.
### Examples
Look at the files in the examples directory for some samples.
### Compiling
The programs are coded in C++ and follow the C++11 standard. You must have VTK
(http://vtk.org) installed on your system, to benefit from full functionalities.
Files from the eigen3 (http://eigen.tuxfamily.org) and boost
(http://www.boost.org) libraries are distributed with the source to facilitate
compilation. These codes were compiled and tested on macs with the default
compiler (clang). They were also tested to some extent under linux with g++
version 4.8.
## Matlab wrappers
To compile the mexfiles, you will need:
- a C++ compiler that conforms to the C++11 standard
- the source codes of the ttcr package
On my OS X machine, I use this command to compile from a terminal:
```
MATLAB=/Applications/MATLAB_R2014a.app
$MATLAB/bin/mex -O CXXFLAGS='$CXXFLAGS -std=c++11 -stdlib=libc++' \
LDFLAGS='$LDFLAGS -std=c++11 -stdlib=libc++' -largeArrayDims -v \
-I$HOME/src/ttcr/ttcr -I$HOME/src/ttcr/boost_1_81_0 \
-I$HOME/src/ttcr/eigen-3.4.0 grid2dunsp_mex.cpp
```
3D classes must be compiled with `verbose.cpp` in the list of source files, i.e.
```
$MATLAB/bin/mex -O CXXFLAGS='$CXXFLAGS -std=c++11 -stdlib=libc++' \
LDFLAGS='$LDFLAGS -std=c++11 -stdlib=libc++' -largeArrayDims -v \
-I$HOME/src/ttcr/ttcr -I$HOME/src/ttcr/boost_1_81_0 \
-I$HOME/src/ttcr/eigen-3.4.0 grid3dunfs_mex.cpp verbose.cpp
```
On a windows machine with intel compiler installed, I could compile it from the matlab prompt with:
```
mex -v -O COMPFLAGS='$COMPFLAGS /Qstd=c++11' -largeArrayDims -I../ttcr -I../boost_1_81_0 -I../eigen-3.4.0 grid2dunsp_mex.cpp
```
Unfortunately, I cannot offer extensive support for compiling on other platforms, especially windows variants.
Please report bugs to https://github.com/groupeLIAMG/ttcr/issues
## References
```
@article{doi:10.1111/1365-2478.12930,
author = {Nasr, Maher and Giroux, Bernard and Dupuis, J. Christian},
title = {A hybrid approach to compute seismic travel times in three-dimensional tetrahedral meshes},
journal = {Geophysical Prospecting},
volume = {n/a},
number = {n/a},
pages = {},
keywords = {Travel time, Seismic modelling, Ray tracing, Seismics, Computing aspects},
doi = {10.1111/1365-2478.12930},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2478.12930},
}
@inbook{nasr18,
author = { Maher Nasr and Bernard Giroux and J. Christian Dupuis },
title = {An optimized approach to compute traveltimes in 3D unstructured meshes},
booktitle = {SEG Technical Program Expanded Abstracts 2018},
chapter = {},
pages = {5073-5077},
year = {2018},
doi = {10.1190/segam2018-2997918.1},
URL = {https://library.seg.org/doi/abs/10.1190/segam2018-2997918.1},
eprint = {https://library.seg.org/doi/pdf/10.1190/segam2018-2997918.1}
}
@InProceedings{giroux14,
Title = {Comparison of grid-based methods for raytracing on unstructured meshes},
Author = {Bernard Giroux},
Booktitle = {SEG Technical Program Expanded Abstracts},
Year = {2014},
Pages = {3388-3392},
Chapter = {649},
DOI = {10.1190/segam2014-1197.1},
Eprint = {http://library.seg.org/doi/pdf/10.1190/segam2014-1197.1},
URL = {http://dx.doi.org/10.1190/segam2014-1197.1}
}
@ARTICLE{giroux13,
author = {Bernard Giroux and Beno\^{\i}t Larouche},
title = {Task-parallel implementation of {3D} shortest path raytracing for
geophysical applications},
journal = {Computers & Geosciences},
year = {2013},
volume = {54},
pages = {130--141},
number = {0},
doi = {10.1016/j.cageo.2012.12.005}
url = {http://dx.doi.org/10.1016/j.cageo.2012.12.005}
}
@INPROCEEDINGS{giroux13b,
author = {Bernard Giroux},
title = {Shortest path raytracing on tetrahedral meshes},
booktitle = {75$^{th}$ EAGE Conference \& Exhibition},
year = {2013},
address = {London},
organization = {EAGE},
doi = {10.3997/2214-4609.20130236}
url = {http://dx.doi.org/10.3997/2214-4609.20130236}
}
@ARTICLE{lelievre11,
author = {Leli\`evre, Peter G. and Farquharson, Colin G. and Hurich, Charles A.},
title = {Computing first-arrival seismic traveltimes on unstructured 3-{D}
tetrahedral grids using the Fast Marching Method},
journal = {Geophysical Journal International},
year = {2011},
volume = {184},
pages = {885-896},
number = {2},
doi = {10.1111/j.1365-246X.2010.04880.x}
url = {http://dx.doi.org/10.1111/j.1365-246X.2010.04880.x}
}
@ARTICLE{qian07,
author = {Qian, Jianliang and Zhang, Yong-Tao and Zhao, Hong-Kai},
title = {Fast Sweeping Methods for Eikonal Equations on Triangular Meshes},
journal = {SIAM Journal on Numerical Analysis},
year = {2007},
volume = {45},
pages = {83--107},
number = {1},
doi = {10.1137/050627083},
publisher = {Society for Industrial and Applied Mathematics},
url = {http://www.jstor.org/stable/40232919}
}
@Article{zhang06,
Title = {High Order Fast Sweeping Methods for Static {H}amilton–{J}acobi Equations},
Author = {Yong-Tao Zhang and Hong-Kai Zhao and Jianliang Qian},
Journal = {Journal of Scientific Computing},
Year = {2006},
Number = {1},
Pages = {25--56},
Volume = {29},
DOI = {10.1007/s10915-005-9014-3},
URL = {http://dx.doi.org/10.1007/s10915-005-9014-3}
}
@Article{zhao05,
Title = {A Fast Sweeping Method for Eikonal Equations},
Author = {Zhao, Hongkai},
Journal = {Mathematics of Computation},
Year = {2005},
Month = apr,
Number = {250},
Pages = {603--627},
Volume = {74},
Publisher = {American Mathematical Society},
URL = {http://www.jstor.org/stable/4100081}
}
```
%prep
%autosetup -n ttcrpy-1.2.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ttcrpy -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.1-1
- Package Spec generated
|