summaryrefslogtreecommitdiff
path: root/python-turbo-seti.spec
blob: c7c02c466e00bb2f20023e1a7a1320da211ebd54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
%global _empty_manifest_terminate_build 0
Name:		python-turbo-seti
Version:	2.3.2
Release:	1
Summary:	Analysis tool for the search of narrow band drifting signals in filterbank data
License:	MIT License
URL:		https://github.com/UCBerkeleySETI/turbo_seti
Source0:	https://mirrors.aliyun.com/pypi/web/packages/cd/ae/d16f70d81ccc38f0dd346be128b9f1698b8890d1e3bda87fe88e1d8c04c2/turbo_seti-2.3.2.tar.gz
BuildArch:	noarch

Requires:	python3-astropy
Requires:	python3-numpy
Requires:	python3-blimpy
Requires:	python3-pandas
Requires:	python3-toolz
Requires:	python3-fsspec
Requires:	python3-dask
Requires:	python3-dask[bag]
Requires:	python3-numba
Requires:	python3-cloudpickle

%description
***turbo*SETI** is an analysis tool for the search of narrow band drifting signals in filterbank data (frequency vs. time).
The main purpose of the code is to hopefully one day find signals of extraterrestrial origin!!
It can search the data for hundreds of drift rates (in Hz/sec). It can handle either .fil or .h5 file formats.
**NOTE**:
This code is stable, but new features are currently under development.
Some details for the expert eye:
- Python based, with taylor tree in Numba for improved performance.
- Pre-calculated `drift index arrays`.
- Output plain text file with information on each hit.
- Including output reader into a pandas DataFrame.
It was originally based on `dedoppler` [dedoppler](http://github.com/cs150bf/gbt_seti/); which is based on  `rawdopplersearch.c`  [`gbt_seti/src/rawdopplersearch.c`](https://github.com/UCBerkeleySETI/gbt_seti/tree/master/src/rawdopplersearch.c))

%package -n python3-turbo-seti
Summary:	Analysis tool for the search of narrow band drifting signals in filterbank data
Provides:	python-turbo-seti
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-turbo-seti
***turbo*SETI** is an analysis tool for the search of narrow band drifting signals in filterbank data (frequency vs. time).
The main purpose of the code is to hopefully one day find signals of extraterrestrial origin!!
It can search the data for hundreds of drift rates (in Hz/sec). It can handle either .fil or .h5 file formats.
**NOTE**:
This code is stable, but new features are currently under development.
Some details for the expert eye:
- Python based, with taylor tree in Numba for improved performance.
- Pre-calculated `drift index arrays`.
- Output plain text file with information on each hit.
- Including output reader into a pandas DataFrame.
It was originally based on `dedoppler` [dedoppler](http://github.com/cs150bf/gbt_seti/); which is based on  `rawdopplersearch.c`  [`gbt_seti/src/rawdopplersearch.c`](https://github.com/UCBerkeleySETI/gbt_seti/tree/master/src/rawdopplersearch.c))

%package help
Summary:	Development documents and examples for turbo-seti
Provides:	python3-turbo-seti-doc
%description help
***turbo*SETI** is an analysis tool for the search of narrow band drifting signals in filterbank data (frequency vs. time).
The main purpose of the code is to hopefully one day find signals of extraterrestrial origin!!
It can search the data for hundreds of drift rates (in Hz/sec). It can handle either .fil or .h5 file formats.
**NOTE**:
This code is stable, but new features are currently under development.
Some details for the expert eye:
- Python based, with taylor tree in Numba for improved performance.
- Pre-calculated `drift index arrays`.
- Output plain text file with information on each hit.
- Including output reader into a pandas DataFrame.
It was originally based on `dedoppler` [dedoppler](http://github.com/cs150bf/gbt_seti/); which is based on  `rawdopplersearch.c`  [`gbt_seti/src/rawdopplersearch.c`](https://github.com/UCBerkeleySETI/gbt_seti/tree/master/src/rawdopplersearch.c))

%prep
%autosetup -n turbo_seti-2.3.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-turbo-seti -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.3.2-1
- Package Spec generated