summaryrefslogtreecommitdiff
path: root/python-unidip.spec
blob: 7e0091730afe70310944d0ca34de27d094b6e027 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
%global _empty_manifest_terminate_build 0
Name:		python-unidip
Version:	0.1.1
Release:	1
Summary:	Python port of the UniDip clustering algorithm
License:	GPL
URL:		http://github.com/BenjaminDoran/unidip
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1c/22/e2b39fd524297ecc6c439748c4e20d56a97a8829f2b2b1897365a0f23a19/unidip-0.1.1.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-matplotlib

%description
# UniDip Python Port

See reference paper:  http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise

UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.

## Install

coming soon...
```
pip3.6 install unidip
```

## Examples

### Basic Usage

```python
from unidip import UniDip

# create bi-modal distribution
dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])

# sort data so returned indices are meaningful
dat = np.msort(dat)

# get start and stop indices of peaks 
intervals = UniDip(dat).run()
```

### Advanced Options

* **alpha**: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
* **mrg_dst**: Defines how close intervals must be before they are merged.
* **ntrials**: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.

```python
intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()
```



%package -n python3-unidip
Summary:	Python port of the UniDip clustering algorithm
Provides:	python-unidip
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-unidip
# UniDip Python Port

See reference paper:  http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise

UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.

## Install

coming soon...
```
pip3.6 install unidip
```

## Examples

### Basic Usage

```python
from unidip import UniDip

# create bi-modal distribution
dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])

# sort data so returned indices are meaningful
dat = np.msort(dat)

# get start and stop indices of peaks 
intervals = UniDip(dat).run()
```

### Advanced Options

* **alpha**: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
* **mrg_dst**: Defines how close intervals must be before they are merged.
* **ntrials**: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.

```python
intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()
```



%package help
Summary:	Development documents and examples for unidip
Provides:	python3-unidip-doc
%description help
# UniDip Python Port

See reference paper:  http://www.kdd.org/kdd2016/subtopic/view/skinny-dip-clustering-in-a-sea-of-noise

UniDip is a noise robust clustering algorithm for 1 dimensional numeric data. It recursively extracts peaks of density in the data utilizing the Hartigan Dip-test of Unimodality.

## Install

coming soon...
```
pip3.6 install unidip
```

## Examples

### Basic Usage

```python
from unidip import UniDip

# create bi-modal distribution
dat = np.concatenate([np.random.randn(200)-3, np.random.randn(200)+3])

# sort data so returned indices are meaningful
dat = np.msort(dat)

# get start and stop indices of peaks 
intervals = UniDip(dat).run()
```

### Advanced Options

* **alpha**: control sensitivity as p-value. Default is 0.05. increase to isolate more peaks with less confidence. Or, decrease to isolate only peaks that are least likely to be noise.
* **mrg_dst**: Defines how close intervals must be before they are merged.
* **ntrials**: how many trials are run in Hartigan Dip Test more trials adds confidance but takes longer.

```python
intervals = UniDip(dat, alpha=0.001, ntrials=1000, mrg_dst=5).run()
```



%prep
%autosetup -n unidip-0.1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-unidip -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.1-1
- Package Spec generated