1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
|
%global _empty_manifest_terminate_build 0
Name: python-uniplot
Version: 0.10.0
Release: 1
Summary: Lightweight plotting to the terminal. 4x resolution via Unicode.
License: MIT
URL: https://pypi.org/project/uniplot/
Source0: https://mirrors.aliyun.com/pypi/web/packages/84/3c/e12798b1789fbba1185db59c902733e87adfe33a38c43bfc72d9cd826feb/uniplot-0.10.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
%description
# Uniplot
[](https://github.com/olavolav/uniplot/actions?query=workflow%3A"Unit+Tests")
[](https://pypi.org/project/uniplot/)
[](https://pepy.tech/project/uniplot)
Lightweight plotting to the terminal. 4x resolution via Unicode.

When working with production data science code it can be handy to have plotting
tool that does not rely on graphics dependencies or works only in a Jupyter notebook.
The **use case** that this was built for is to have plots as part of your data science /
machine learning CI pipeline - that way whenever something goes wrong, you get not only
the error and backtrace but also plots that show what the problem was.
## Features
* Unicode drawing, so 4x the resolution (pixels) of usual ASCII plots
* Super simple API
* Interactive mode (pass `interactive=True`)
* Color mode (pass `color=True`) useful in particular when plotting multiple series
* It's fast: Plotting 1M data points takes 100ms thanks to NumPy magic
* Only one dependency: NumPy (but you have that anyway don't you)
Please note that Unicode drawing will work correctly only when using a font that
fully supports the [Box-drawing character set](https://en.wikipedia.org/wiki/Box-drawing_character).
Please refer to [this page for a (incomplete) list of supported fonts](https://www.fileformat.info/info/unicode/block/block_elements/fontsupport.htm).
## Examples
Note that all the examples are without color and plotting only a single series od data. For using color see the GIF example above.
### Plot sine wave
```python
import math
x = [math.sin(i/20)+i/300 for i in range(600)]
from uniplot import plot
plot(x, title="Sine wave")
```
Result:
```
Sine wave
┌────────────────────────────────────────────────────────────┐
│ ▟▀▚ │
│ ▗▘ ▝▌ │
│ ▗▛▜▖ ▞ ▐ │
│ ▞ ▜ ▗▌ ▌ │ 2
│ ▟▀▙ ▗▘ ▝▌ ▐ ▜ │
│ ▐▘ ▝▖ ▞ ▜ ▌ ▝▌ │
│ ▗▛▜▖ ▛ ▜ ▗▌ ▝▌ ▐▘ ▜ │
│ ▛ ▙ ▗▘ ▝▖ ▐ ▚ ▞ ▝▌ │
│ ▟▀▖ ▐▘ ▝▖ ▟ ▚ ▌ ▝▖ ▗▌ ▜▄│ 1
│ ▐▘ ▐▖ ▛ ▙ ▌ ▐▖ ▗▘ ▚ ▞ │
│ ▛ ▙ ▗▘ ▐▖ ▐ ▙ ▞ ▝▙▟▘ │
│▐▘ ▐▖ ▐ ▌ ▛ ▐▖ ▗▘ │
│▞ ▌ ▌ ▐ ▗▘ ▜▄▛ │
│▌─────▐────▐▘───────▙──▞────────────────────────────────────│ 0
│ ▌ ▛ ▝▙▟▘ │
│ ▜ ▐▘ │
│ ▙▄▛ │
└────────────────────────────────────────────────────────────┘
100 200 300 400 500 600
```
### Plot global temperature data
Here we're using Pandas to load and prepare global temperature data from the [Our World in Data GitHub repository](https://github.com/owid/owid-datasets).
First we load the data, rename a column and and filter the data:
```python
import pandas as pd
uri = "https://github.com/owid/owid-datasets/raw/master/datasets/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre.csv"
data = pd.read_csv(uri)
data = data.rename(columns={"Global average temperature anomaly (Hadley Centre)": "Global"})
data = data[data.Entity == "median"]
```
Then we can plot it:
```python
from uniplot import plot
plot(xs=data.Year, ys=data.Global, lines=True, title="Global normalized land-sea temperature anomaly", y_unit=" °C")
```
Result:
```
Global normalized land-sea temperature anomaly
┌────────────────────────────────────────────────────────────┐
│ ▞▀│
│ ▐ │
│ ▐ │
│ ▗ ▌ │ 0.6 °C
│ ▙ ▗▄ ▛▄▖▗▘▌ ▞ │
│ ▗▜ ▌ ▜ ▚▞ ▚▞ │
│ ▐▝▖▐ ▘ │
│ ▗ ▗ ▌ ▙▌ │ 0.3 °C
│ ▛▖ ▞▙▘ ▘ │
│ ▖ ▗▄▗▘▐ ▐▘▜ │
│ ▟ █ ▞ ▜ ▝▄▘ │
│ ▗▚ ▗ ▖ ▗ ▖▗▞ █▐ ▌ ▘ │
│▁▁▁▞▐▁▁▗▘▜▗▀▀▌▁▁▁▁▙▁▁▟▁▁▁▙▐▁▁▜▁▌▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0 °C
│▚ ▐ ▝▖ ▐ ▛ ▌ ▗▄▐ ▌▗▘▌ ▐▝▌ ▝▘ │
│ ▌▌ ▌ ▞ ▐▗▘ ▛ ▐▞ ▌ ▐ │
│ ▝ ▝▖▌ ▐▞ ▝▌ ▚▜▐ │
│ ▗▌ ▝ ▝ ▌ │
└────────────────────────────────────────────────────────────┘
1,950 1,960 1,970 1,980 1,990 2,000 2,010
```
## Parameters
The `plot` function accepts a number of parameters, all listed below. Note that only
`ys` is required, all others are optional.
There is also a `plot_to_string` function with the same signature, if you want the result as a list of strings, to include the output elsewhere.
### Data
* `xs` - The x coordinates of the points to plot. Can either be `None`, or a list or NumPy array for plotting a single series, or a list of those for plotting multiple series. Defaults to `None`, meaning that the x axis will be just the sample index of
`ys`.
* `ys` - The y coordinates of the points to plot. Can either be a list or NumPy array for plotting a single series, or a list of those for plotting multiple series.
In both cases, NaN values are ignored.
### Options
In alphabetical order:
* `color` - Draw series in color. Defaults to `False` when plotting a single series, and to `True` when plotting multiple.
* `force_ascii` - Force ASCII characters for plotting only. This can be useful for compatibility, for example when using uniplot inside of CI/CD systems that do not support Unicode. Defaults to `False`.
* `height` - The height of the plotting region, in characters. Default is `17`.
* `interactive` - Enable interactive mode. Defaults to `False`.
* `legend_labels` - Labels for the series. Can be `None` or a list of strings. Defaults to `None`.
* `lines` - Enable lines between points. Can either be `True` or `False`, or a list of those values for plotting multiple series. Defaults to `False`.
* `line_length_hard_cap` - Enforce a hard limit on the number of characters per line of the plot area. This may override the `width` option if there is not enough space. Defaults to `None`.
* `title` - The title of the plot. Defaults to `None`.
* `width` - The width of the plotting region, in characters. Default is `60`. Note that if the `line_length_hard_cap` option is used and there is not enough space, the actual width may be smaller.
* `x_as_log` - Plot the x axis as logarithmic scale. Defaults to `False`.
* `x_gridlines` - A list of x values that have a vertical line for better orientation. Defaults to `[0]`, or to `[]` if `x_as_log` is enabled.
* `x_max` - Maximum x value of the view. Defaults to a value that shows all data points.
* `x_min` - Minimum x value of the view. Defaults to a value that shows all data points.
* `x_unit` - Unit of the x axis. This is a string that is appended to the axis labels. Defaults to `""`.
* `y_as_log` - Plot the y axis as logarithmic scale. Defaults to `False`.
* `y_gridlines` - A list of y values that have a horizontal line for better orientation. Defaults to `[0]`, or to `[]` if `y_as_log` is enabled.
* `y_max` - Maximum y value of the view. Defaults to a value that shows all data points.
* `y_min` - Minimum y value of the view. Defaults to a value that shows all data points.
* `y_unit` - Unit of the y axis. This is a string that is appended to the axis labels. Defaults to `""`.
## Experimental features
For convenience there is also a `histogram` function that accepts one or more series and
plots bar-chart like histograms. It will automatically discretize the series into a
number of bins given by the `bins` option and display the result.
When calling the `histogram` function, the `lines` option is `True` by default.
Example:
```python
import numpy as np
x = np.sin(np.linspace(1, 1000))
from uniplot import histogram
histogram(x)
```
Result:
```
┌────────────────────────────────────────────────────────────┐
│ ▛▀▀▌ │ ▐▀▀▜ │ 5
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▀▀▀▌ │ ▐▀▀▀ ▝▀▀▜ │ 4
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▙▄▄▄▄▄▖ │ ▗▄▄▄ ▐ ▐ │ 3
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▜ ▐▀▀▀ ▝▀▀▀ ▐ │ 2
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐▄▄▟ ▐ │ 1
│ ▌ │ ▐ │
│ ▌ │ ▐ │
│▄▄▄▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▐▄▄▄│ 0
└────────────────────────────────────────────────────────────┘
-1 0 1
```
## Installation
Install via pip using:
```
pip install uniplot
```
## Contributing
Clone this repository, and install dependecies via `poetry install`.
You can run the tests vie `poetry run ./run_tests` to make sure your setup is good. Then proceed with issues, PRs etc. the usual way.
%package -n python3-uniplot
Summary: Lightweight plotting to the terminal. 4x resolution via Unicode.
Provides: python-uniplot
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-uniplot
# Uniplot
[](https://github.com/olavolav/uniplot/actions?query=workflow%3A"Unit+Tests")
[](https://pypi.org/project/uniplot/)
[](https://pepy.tech/project/uniplot)
Lightweight plotting to the terminal. 4x resolution via Unicode.

When working with production data science code it can be handy to have plotting
tool that does not rely on graphics dependencies or works only in a Jupyter notebook.
The **use case** that this was built for is to have plots as part of your data science /
machine learning CI pipeline - that way whenever something goes wrong, you get not only
the error and backtrace but also plots that show what the problem was.
## Features
* Unicode drawing, so 4x the resolution (pixels) of usual ASCII plots
* Super simple API
* Interactive mode (pass `interactive=True`)
* Color mode (pass `color=True`) useful in particular when plotting multiple series
* It's fast: Plotting 1M data points takes 100ms thanks to NumPy magic
* Only one dependency: NumPy (but you have that anyway don't you)
Please note that Unicode drawing will work correctly only when using a font that
fully supports the [Box-drawing character set](https://en.wikipedia.org/wiki/Box-drawing_character).
Please refer to [this page for a (incomplete) list of supported fonts](https://www.fileformat.info/info/unicode/block/block_elements/fontsupport.htm).
## Examples
Note that all the examples are without color and plotting only a single series od data. For using color see the GIF example above.
### Plot sine wave
```python
import math
x = [math.sin(i/20)+i/300 for i in range(600)]
from uniplot import plot
plot(x, title="Sine wave")
```
Result:
```
Sine wave
┌────────────────────────────────────────────────────────────┐
│ ▟▀▚ │
│ ▗▘ ▝▌ │
│ ▗▛▜▖ ▞ ▐ │
│ ▞ ▜ ▗▌ ▌ │ 2
│ ▟▀▙ ▗▘ ▝▌ ▐ ▜ │
│ ▐▘ ▝▖ ▞ ▜ ▌ ▝▌ │
│ ▗▛▜▖ ▛ ▜ ▗▌ ▝▌ ▐▘ ▜ │
│ ▛ ▙ ▗▘ ▝▖ ▐ ▚ ▞ ▝▌ │
│ ▟▀▖ ▐▘ ▝▖ ▟ ▚ ▌ ▝▖ ▗▌ ▜▄│ 1
│ ▐▘ ▐▖ ▛ ▙ ▌ ▐▖ ▗▘ ▚ ▞ │
│ ▛ ▙ ▗▘ ▐▖ ▐ ▙ ▞ ▝▙▟▘ │
│▐▘ ▐▖ ▐ ▌ ▛ ▐▖ ▗▘ │
│▞ ▌ ▌ ▐ ▗▘ ▜▄▛ │
│▌─────▐────▐▘───────▙──▞────────────────────────────────────│ 0
│ ▌ ▛ ▝▙▟▘ │
│ ▜ ▐▘ │
│ ▙▄▛ │
└────────────────────────────────────────────────────────────┘
100 200 300 400 500 600
```
### Plot global temperature data
Here we're using Pandas to load and prepare global temperature data from the [Our World in Data GitHub repository](https://github.com/owid/owid-datasets).
First we load the data, rename a column and and filter the data:
```python
import pandas as pd
uri = "https://github.com/owid/owid-datasets/raw/master/datasets/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre.csv"
data = pd.read_csv(uri)
data = data.rename(columns={"Global average temperature anomaly (Hadley Centre)": "Global"})
data = data[data.Entity == "median"]
```
Then we can plot it:
```python
from uniplot import plot
plot(xs=data.Year, ys=data.Global, lines=True, title="Global normalized land-sea temperature anomaly", y_unit=" °C")
```
Result:
```
Global normalized land-sea temperature anomaly
┌────────────────────────────────────────────────────────────┐
│ ▞▀│
│ ▐ │
│ ▐ │
│ ▗ ▌ │ 0.6 °C
│ ▙ ▗▄ ▛▄▖▗▘▌ ▞ │
│ ▗▜ ▌ ▜ ▚▞ ▚▞ │
│ ▐▝▖▐ ▘ │
│ ▗ ▗ ▌ ▙▌ │ 0.3 °C
│ ▛▖ ▞▙▘ ▘ │
│ ▖ ▗▄▗▘▐ ▐▘▜ │
│ ▟ █ ▞ ▜ ▝▄▘ │
│ ▗▚ ▗ ▖ ▗ ▖▗▞ █▐ ▌ ▘ │
│▁▁▁▞▐▁▁▗▘▜▗▀▀▌▁▁▁▁▙▁▁▟▁▁▁▙▐▁▁▜▁▌▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0 °C
│▚ ▐ ▝▖ ▐ ▛ ▌ ▗▄▐ ▌▗▘▌ ▐▝▌ ▝▘ │
│ ▌▌ ▌ ▞ ▐▗▘ ▛ ▐▞ ▌ ▐ │
│ ▝ ▝▖▌ ▐▞ ▝▌ ▚▜▐ │
│ ▗▌ ▝ ▝ ▌ │
└────────────────────────────────────────────────────────────┘
1,950 1,960 1,970 1,980 1,990 2,000 2,010
```
## Parameters
The `plot` function accepts a number of parameters, all listed below. Note that only
`ys` is required, all others are optional.
There is also a `plot_to_string` function with the same signature, if you want the result as a list of strings, to include the output elsewhere.
### Data
* `xs` - The x coordinates of the points to plot. Can either be `None`, or a list or NumPy array for plotting a single series, or a list of those for plotting multiple series. Defaults to `None`, meaning that the x axis will be just the sample index of
`ys`.
* `ys` - The y coordinates of the points to plot. Can either be a list or NumPy array for plotting a single series, or a list of those for plotting multiple series.
In both cases, NaN values are ignored.
### Options
In alphabetical order:
* `color` - Draw series in color. Defaults to `False` when plotting a single series, and to `True` when plotting multiple.
* `force_ascii` - Force ASCII characters for plotting only. This can be useful for compatibility, for example when using uniplot inside of CI/CD systems that do not support Unicode. Defaults to `False`.
* `height` - The height of the plotting region, in characters. Default is `17`.
* `interactive` - Enable interactive mode. Defaults to `False`.
* `legend_labels` - Labels for the series. Can be `None` or a list of strings. Defaults to `None`.
* `lines` - Enable lines between points. Can either be `True` or `False`, or a list of those values for plotting multiple series. Defaults to `False`.
* `line_length_hard_cap` - Enforce a hard limit on the number of characters per line of the plot area. This may override the `width` option if there is not enough space. Defaults to `None`.
* `title` - The title of the plot. Defaults to `None`.
* `width` - The width of the plotting region, in characters. Default is `60`. Note that if the `line_length_hard_cap` option is used and there is not enough space, the actual width may be smaller.
* `x_as_log` - Plot the x axis as logarithmic scale. Defaults to `False`.
* `x_gridlines` - A list of x values that have a vertical line for better orientation. Defaults to `[0]`, or to `[]` if `x_as_log` is enabled.
* `x_max` - Maximum x value of the view. Defaults to a value that shows all data points.
* `x_min` - Minimum x value of the view. Defaults to a value that shows all data points.
* `x_unit` - Unit of the x axis. This is a string that is appended to the axis labels. Defaults to `""`.
* `y_as_log` - Plot the y axis as logarithmic scale. Defaults to `False`.
* `y_gridlines` - A list of y values that have a horizontal line for better orientation. Defaults to `[0]`, or to `[]` if `y_as_log` is enabled.
* `y_max` - Maximum y value of the view. Defaults to a value that shows all data points.
* `y_min` - Minimum y value of the view. Defaults to a value that shows all data points.
* `y_unit` - Unit of the y axis. This is a string that is appended to the axis labels. Defaults to `""`.
## Experimental features
For convenience there is also a `histogram` function that accepts one or more series and
plots bar-chart like histograms. It will automatically discretize the series into a
number of bins given by the `bins` option and display the result.
When calling the `histogram` function, the `lines` option is `True` by default.
Example:
```python
import numpy as np
x = np.sin(np.linspace(1, 1000))
from uniplot import histogram
histogram(x)
```
Result:
```
┌────────────────────────────────────────────────────────────┐
│ ▛▀▀▌ │ ▐▀▀▜ │ 5
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▀▀▀▌ │ ▐▀▀▀ ▝▀▀▜ │ 4
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▙▄▄▄▄▄▖ │ ▗▄▄▄ ▐ ▐ │ 3
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▜ ▐▀▀▀ ▝▀▀▀ ▐ │ 2
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐▄▄▟ ▐ │ 1
│ ▌ │ ▐ │
│ ▌ │ ▐ │
│▄▄▄▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▐▄▄▄│ 0
└────────────────────────────────────────────────────────────┘
-1 0 1
```
## Installation
Install via pip using:
```
pip install uniplot
```
## Contributing
Clone this repository, and install dependecies via `poetry install`.
You can run the tests vie `poetry run ./run_tests` to make sure your setup is good. Then proceed with issues, PRs etc. the usual way.
%package help
Summary: Development documents and examples for uniplot
Provides: python3-uniplot-doc
%description help
# Uniplot
[](https://github.com/olavolav/uniplot/actions?query=workflow%3A"Unit+Tests")
[](https://pypi.org/project/uniplot/)
[](https://pepy.tech/project/uniplot)
Lightweight plotting to the terminal. 4x resolution via Unicode.

When working with production data science code it can be handy to have plotting
tool that does not rely on graphics dependencies or works only in a Jupyter notebook.
The **use case** that this was built for is to have plots as part of your data science /
machine learning CI pipeline - that way whenever something goes wrong, you get not only
the error and backtrace but also plots that show what the problem was.
## Features
* Unicode drawing, so 4x the resolution (pixels) of usual ASCII plots
* Super simple API
* Interactive mode (pass `interactive=True`)
* Color mode (pass `color=True`) useful in particular when plotting multiple series
* It's fast: Plotting 1M data points takes 100ms thanks to NumPy magic
* Only one dependency: NumPy (but you have that anyway don't you)
Please note that Unicode drawing will work correctly only when using a font that
fully supports the [Box-drawing character set](https://en.wikipedia.org/wiki/Box-drawing_character).
Please refer to [this page for a (incomplete) list of supported fonts](https://www.fileformat.info/info/unicode/block/block_elements/fontsupport.htm).
## Examples
Note that all the examples are without color and plotting only a single series od data. For using color see the GIF example above.
### Plot sine wave
```python
import math
x = [math.sin(i/20)+i/300 for i in range(600)]
from uniplot import plot
plot(x, title="Sine wave")
```
Result:
```
Sine wave
┌────────────────────────────────────────────────────────────┐
│ ▟▀▚ │
│ ▗▘ ▝▌ │
│ ▗▛▜▖ ▞ ▐ │
│ ▞ ▜ ▗▌ ▌ │ 2
│ ▟▀▙ ▗▘ ▝▌ ▐ ▜ │
│ ▐▘ ▝▖ ▞ ▜ ▌ ▝▌ │
│ ▗▛▜▖ ▛ ▜ ▗▌ ▝▌ ▐▘ ▜ │
│ ▛ ▙ ▗▘ ▝▖ ▐ ▚ ▞ ▝▌ │
│ ▟▀▖ ▐▘ ▝▖ ▟ ▚ ▌ ▝▖ ▗▌ ▜▄│ 1
│ ▐▘ ▐▖ ▛ ▙ ▌ ▐▖ ▗▘ ▚ ▞ │
│ ▛ ▙ ▗▘ ▐▖ ▐ ▙ ▞ ▝▙▟▘ │
│▐▘ ▐▖ ▐ ▌ ▛ ▐▖ ▗▘ │
│▞ ▌ ▌ ▐ ▗▘ ▜▄▛ │
│▌─────▐────▐▘───────▙──▞────────────────────────────────────│ 0
│ ▌ ▛ ▝▙▟▘ │
│ ▜ ▐▘ │
│ ▙▄▛ │
└────────────────────────────────────────────────────────────┘
100 200 300 400 500 600
```
### Plot global temperature data
Here we're using Pandas to load and prepare global temperature data from the [Our World in Data GitHub repository](https://github.com/owid/owid-datasets).
First we load the data, rename a column and and filter the data:
```python
import pandas as pd
uri = "https://github.com/owid/owid-datasets/raw/master/datasets/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre/Global%20average%20temperature%20anomaly%20-%20Hadley%20Centre.csv"
data = pd.read_csv(uri)
data = data.rename(columns={"Global average temperature anomaly (Hadley Centre)": "Global"})
data = data[data.Entity == "median"]
```
Then we can plot it:
```python
from uniplot import plot
plot(xs=data.Year, ys=data.Global, lines=True, title="Global normalized land-sea temperature anomaly", y_unit=" °C")
```
Result:
```
Global normalized land-sea temperature anomaly
┌────────────────────────────────────────────────────────────┐
│ ▞▀│
│ ▐ │
│ ▐ │
│ ▗ ▌ │ 0.6 °C
│ ▙ ▗▄ ▛▄▖▗▘▌ ▞ │
│ ▗▜ ▌ ▜ ▚▞ ▚▞ │
│ ▐▝▖▐ ▘ │
│ ▗ ▗ ▌ ▙▌ │ 0.3 °C
│ ▛▖ ▞▙▘ ▘ │
│ ▖ ▗▄▗▘▐ ▐▘▜ │
│ ▟ █ ▞ ▜ ▝▄▘ │
│ ▗▚ ▗ ▖ ▗ ▖▗▞ █▐ ▌ ▘ │
│▁▁▁▞▐▁▁▗▘▜▗▀▀▌▁▁▁▁▙▁▁▟▁▁▁▙▐▁▁▜▁▌▞▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│ 0 °C
│▚ ▐ ▝▖ ▐ ▛ ▌ ▗▄▐ ▌▗▘▌ ▐▝▌ ▝▘ │
│ ▌▌ ▌ ▞ ▐▗▘ ▛ ▐▞ ▌ ▐ │
│ ▝ ▝▖▌ ▐▞ ▝▌ ▚▜▐ │
│ ▗▌ ▝ ▝ ▌ │
└────────────────────────────────────────────────────────────┘
1,950 1,960 1,970 1,980 1,990 2,000 2,010
```
## Parameters
The `plot` function accepts a number of parameters, all listed below. Note that only
`ys` is required, all others are optional.
There is also a `plot_to_string` function with the same signature, if you want the result as a list of strings, to include the output elsewhere.
### Data
* `xs` - The x coordinates of the points to plot. Can either be `None`, or a list or NumPy array for plotting a single series, or a list of those for plotting multiple series. Defaults to `None`, meaning that the x axis will be just the sample index of
`ys`.
* `ys` - The y coordinates of the points to plot. Can either be a list or NumPy array for plotting a single series, or a list of those for plotting multiple series.
In both cases, NaN values are ignored.
### Options
In alphabetical order:
* `color` - Draw series in color. Defaults to `False` when plotting a single series, and to `True` when plotting multiple.
* `force_ascii` - Force ASCII characters for plotting only. This can be useful for compatibility, for example when using uniplot inside of CI/CD systems that do not support Unicode. Defaults to `False`.
* `height` - The height of the plotting region, in characters. Default is `17`.
* `interactive` - Enable interactive mode. Defaults to `False`.
* `legend_labels` - Labels for the series. Can be `None` or a list of strings. Defaults to `None`.
* `lines` - Enable lines between points. Can either be `True` or `False`, or a list of those values for plotting multiple series. Defaults to `False`.
* `line_length_hard_cap` - Enforce a hard limit on the number of characters per line of the plot area. This may override the `width` option if there is not enough space. Defaults to `None`.
* `title` - The title of the plot. Defaults to `None`.
* `width` - The width of the plotting region, in characters. Default is `60`. Note that if the `line_length_hard_cap` option is used and there is not enough space, the actual width may be smaller.
* `x_as_log` - Plot the x axis as logarithmic scale. Defaults to `False`.
* `x_gridlines` - A list of x values that have a vertical line for better orientation. Defaults to `[0]`, or to `[]` if `x_as_log` is enabled.
* `x_max` - Maximum x value of the view. Defaults to a value that shows all data points.
* `x_min` - Minimum x value of the view. Defaults to a value that shows all data points.
* `x_unit` - Unit of the x axis. This is a string that is appended to the axis labels. Defaults to `""`.
* `y_as_log` - Plot the y axis as logarithmic scale. Defaults to `False`.
* `y_gridlines` - A list of y values that have a horizontal line for better orientation. Defaults to `[0]`, or to `[]` if `y_as_log` is enabled.
* `y_max` - Maximum y value of the view. Defaults to a value that shows all data points.
* `y_min` - Minimum y value of the view. Defaults to a value that shows all data points.
* `y_unit` - Unit of the y axis. This is a string that is appended to the axis labels. Defaults to `""`.
## Experimental features
For convenience there is also a `histogram` function that accepts one or more series and
plots bar-chart like histograms. It will automatically discretize the series into a
number of bins given by the `bins` option and display the result.
When calling the `histogram` function, the `lines` option is `True` by default.
Example:
```python
import numpy as np
x = np.sin(np.linspace(1, 1000))
from uniplot import histogram
histogram(x)
```
Result:
```
┌────────────────────────────────────────────────────────────┐
│ ▛▀▀▌ │ ▐▀▀▜ │ 5
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▀▀▀▌ │ ▐▀▀▀ ▝▀▀▜ │ 4
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ │
│ ▌ ▙▄▄▄▄▄▖ │ ▗▄▄▄ ▐ ▐ │ 3
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▌ │ ▐ ▐ ▐ ▐ │
│ ▌ ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▜ ▐▀▀▀ ▝▀▀▀ ▐ │ 2
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐ ▐ ▐ │
│ ▌ │ ▐▄▄▟ ▐ │ 1
│ ▌ │ ▐ │
│ ▌ │ ▐ │
│▄▄▄▌▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁│▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▐▄▄▄│ 0
└────────────────────────────────────────────────────────────┘
-1 0 1
```
## Installation
Install via pip using:
```
pip install uniplot
```
## Contributing
Clone this repository, and install dependecies via `poetry install`.
You can run the tests vie `poetry run ./run_tests` to make sure your setup is good. Then proceed with issues, PRs etc. the usual way.
%prep
%autosetup -n uniplot-0.10.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-uniplot -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.10.0-1
- Package Spec generated
|