summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-11 12:00:12 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-11 12:00:12 +0000
commitafaf11b6208986d68c4f13464edbf5d412775d72 (patch)
treea4b8078b9d9615f4f8f51276081f7892426ef908
parent4e8b3e3ada6ceb5ba5b2465726b7f06ace99e425 (diff)
automatic import of python-upsetplot
-rw-r--r--.gitignore1
-rw-r--r--python-upsetplot.spec288
-rw-r--r--sources1
3 files changed, 290 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..e4b4038 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/UpSetPlot-0.8.0.tar.gz
diff --git a/python-upsetplot.spec b/python-upsetplot.spec
new file mode 100644
index 0000000..ce5ad85
--- /dev/null
+++ b/python-upsetplot.spec
@@ -0,0 +1,288 @@
+%global _empty_manifest_terminate_build 0
+Name: python-UpSetPlot
+Version: 0.8.0
+Release: 1
+Summary: Draw Lex et al.'s UpSet plots with Pandas and Matplotlib
+License: BSD-3-Clause
+URL: https://upsetplot.readthedocs.io
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/25/62/f9ab73c23da63d77e8498253b043d03c65c259f4d0358309b37f56cdf5cd/UpSetPlot-0.8.0.tar.gz
+BuildArch: noarch
+
+
+%description
+|version| |licence| |py-versions|
+|issues| |build| |docs| |coverage|
+This is another Python implementation of UpSet plots by Lex et al. [Lex2014]_.
+UpSet plots are used to visualise set overlaps; like Venn diagrams but
+more readable. Documentation is at https://upsetplot.readthedocs.io.
+This ``upsetplot`` library tries to provide a simple interface backed by an
+extensible, object-oriented design.
+There are many ways to represent the categorisation of data, as covered in
+our `Data Format Guide <https://upsetplot.readthedocs.io/en/stable/formats.html>`_.
+Our internal input format uses a `pandas.Series` containing counts
+corresponding to subset sizes, where each subset is an intersection of named
+categories. The index of the Series indicates which rows pertain to which
+categories, by having multiple boolean indices, like ``example`` in the
+following::
+ >>> from upsetplot import generate_counts
+ >>> example = generate_counts()
+ >>> example
+ cat0 cat1 cat2
+ False False False 56
+ True 283
+ True False 1279
+ True 5882
+ True False False 24
+ True 90
+ True False 429
+ True 1957
+ Name: value, dtype: int64
+Then::
+ >>> from upsetplot import plot
+ >>> plot(example) # doctest: +SKIP
+ >>> from matplotlib import pyplot
+ >>> pyplot.show() # doctest: +SKIP
+makes:
+And you can save the image in various formats::
+ >>> pyplot.savefig("/path/to/myplot.pdf") # doctest: +SKIP
+ >>> pyplot.savefig("/path/to/myplot.png") # doctest: +SKIP
+This plot shows the cardinality of every category combination seen in our data.
+The leftmost column counts items absent from any category. The next three
+columns count items only in ``cat1``, ``cat2`` and ``cat3`` respectively, with
+following columns showing cardinalities for items in each combination of
+exactly two named sets. The rightmost column counts items in all three sets.
+Rotation
+We call the above plot style "horizontal" because the category intersections
+are presented from left to right. `Vertical plots
+<http://upsetplot.readthedocs.io/en/latest/auto_examples/plot_vertical.html>`__
+are also supported!
+Distributions
+Providing a DataFrame rather than a Series as input allows us to expressively
+`plot the distribution of variables
+<http://upsetplot.readthedocs.io/en/latest/auto_examples/plot_boston.html>`__
+in each subset.
+Loading datasets
+While the dataset above is randomly generated, you can prepare your own dataset
+for input to upsetplot. A helpful tool is `from_memberships`, which allows
+us to reconstruct the example above by indicating each data point's category
+membership::
+ >>> from upsetplot import from_memberships
+ >>> example = from_memberships(
+ >>> example
+ cat0 cat1 cat2
+ False False False 56
+ True 283
+ True False 1279
+ True 5882
+ True False False 24
+ True 90
+ True False 429
+ True 1957
+ dtype: int64
+See also `from_contents`, another way to describe categorised data, and
+`from_indicators` which allows each category to be indicated by a column in
+the data frame (or a function of the column's data such as whether it is a
+missing value).
+
+%package -n python3-UpSetPlot
+Summary: Draw Lex et al.'s UpSet plots with Pandas and Matplotlib
+Provides: python-UpSetPlot
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-UpSetPlot
+|version| |licence| |py-versions|
+|issues| |build| |docs| |coverage|
+This is another Python implementation of UpSet plots by Lex et al. [Lex2014]_.
+UpSet plots are used to visualise set overlaps; like Venn diagrams but
+more readable. Documentation is at https://upsetplot.readthedocs.io.
+This ``upsetplot`` library tries to provide a simple interface backed by an
+extensible, object-oriented design.
+There are many ways to represent the categorisation of data, as covered in
+our `Data Format Guide <https://upsetplot.readthedocs.io/en/stable/formats.html>`_.
+Our internal input format uses a `pandas.Series` containing counts
+corresponding to subset sizes, where each subset is an intersection of named
+categories. The index of the Series indicates which rows pertain to which
+categories, by having multiple boolean indices, like ``example`` in the
+following::
+ >>> from upsetplot import generate_counts
+ >>> example = generate_counts()
+ >>> example
+ cat0 cat1 cat2
+ False False False 56
+ True 283
+ True False 1279
+ True 5882
+ True False False 24
+ True 90
+ True False 429
+ True 1957
+ Name: value, dtype: int64
+Then::
+ >>> from upsetplot import plot
+ >>> plot(example) # doctest: +SKIP
+ >>> from matplotlib import pyplot
+ >>> pyplot.show() # doctest: +SKIP
+makes:
+And you can save the image in various formats::
+ >>> pyplot.savefig("/path/to/myplot.pdf") # doctest: +SKIP
+ >>> pyplot.savefig("/path/to/myplot.png") # doctest: +SKIP
+This plot shows the cardinality of every category combination seen in our data.
+The leftmost column counts items absent from any category. The next three
+columns count items only in ``cat1``, ``cat2`` and ``cat3`` respectively, with
+following columns showing cardinalities for items in each combination of
+exactly two named sets. The rightmost column counts items in all three sets.
+Rotation
+We call the above plot style "horizontal" because the category intersections
+are presented from left to right. `Vertical plots
+<http://upsetplot.readthedocs.io/en/latest/auto_examples/plot_vertical.html>`__
+are also supported!
+Distributions
+Providing a DataFrame rather than a Series as input allows us to expressively
+`plot the distribution of variables
+<http://upsetplot.readthedocs.io/en/latest/auto_examples/plot_boston.html>`__
+in each subset.
+Loading datasets
+While the dataset above is randomly generated, you can prepare your own dataset
+for input to upsetplot. A helpful tool is `from_memberships`, which allows
+us to reconstruct the example above by indicating each data point's category
+membership::
+ >>> from upsetplot import from_memberships
+ >>> example = from_memberships(
+ >>> example
+ cat0 cat1 cat2
+ False False False 56
+ True 283
+ True False 1279
+ True 5882
+ True False False 24
+ True 90
+ True False 429
+ True 1957
+ dtype: int64
+See also `from_contents`, another way to describe categorised data, and
+`from_indicators` which allows each category to be indicated by a column in
+the data frame (or a function of the column's data such as whether it is a
+missing value).
+
+%package help
+Summary: Development documents and examples for UpSetPlot
+Provides: python3-UpSetPlot-doc
+%description help
+|version| |licence| |py-versions|
+|issues| |build| |docs| |coverage|
+This is another Python implementation of UpSet plots by Lex et al. [Lex2014]_.
+UpSet plots are used to visualise set overlaps; like Venn diagrams but
+more readable. Documentation is at https://upsetplot.readthedocs.io.
+This ``upsetplot`` library tries to provide a simple interface backed by an
+extensible, object-oriented design.
+There are many ways to represent the categorisation of data, as covered in
+our `Data Format Guide <https://upsetplot.readthedocs.io/en/stable/formats.html>`_.
+Our internal input format uses a `pandas.Series` containing counts
+corresponding to subset sizes, where each subset is an intersection of named
+categories. The index of the Series indicates which rows pertain to which
+categories, by having multiple boolean indices, like ``example`` in the
+following::
+ >>> from upsetplot import generate_counts
+ >>> example = generate_counts()
+ >>> example
+ cat0 cat1 cat2
+ False False False 56
+ True 283
+ True False 1279
+ True 5882
+ True False False 24
+ True 90
+ True False 429
+ True 1957
+ Name: value, dtype: int64
+Then::
+ >>> from upsetplot import plot
+ >>> plot(example) # doctest: +SKIP
+ >>> from matplotlib import pyplot
+ >>> pyplot.show() # doctest: +SKIP
+makes:
+And you can save the image in various formats::
+ >>> pyplot.savefig("/path/to/myplot.pdf") # doctest: +SKIP
+ >>> pyplot.savefig("/path/to/myplot.png") # doctest: +SKIP
+This plot shows the cardinality of every category combination seen in our data.
+The leftmost column counts items absent from any category. The next three
+columns count items only in ``cat1``, ``cat2`` and ``cat3`` respectively, with
+following columns showing cardinalities for items in each combination of
+exactly two named sets. The rightmost column counts items in all three sets.
+Rotation
+We call the above plot style "horizontal" because the category intersections
+are presented from left to right. `Vertical plots
+<http://upsetplot.readthedocs.io/en/latest/auto_examples/plot_vertical.html>`__
+are also supported!
+Distributions
+Providing a DataFrame rather than a Series as input allows us to expressively
+`plot the distribution of variables
+<http://upsetplot.readthedocs.io/en/latest/auto_examples/plot_boston.html>`__
+in each subset.
+Loading datasets
+While the dataset above is randomly generated, you can prepare your own dataset
+for input to upsetplot. A helpful tool is `from_memberships`, which allows
+us to reconstruct the example above by indicating each data point's category
+membership::
+ >>> from upsetplot import from_memberships
+ >>> example = from_memberships(
+ >>> example
+ cat0 cat1 cat2
+ False False False 56
+ True 283
+ True False 1279
+ True 5882
+ True False False 24
+ True 90
+ True False 429
+ True 1957
+ dtype: int64
+See also `from_contents`, another way to describe categorised data, and
+`from_indicators` which allows each category to be indicated by a column in
+the data frame (or a function of the column's data such as whether it is a
+missing value).
+
+%prep
+%autosetup -n UpSetPlot-0.8.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-UpSetPlot -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..d958128
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+16cff9af79ce0ab28eaed323edfb443c UpSetPlot-0.8.0.tar.gz