summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-vadersentiment.spec156
-rw-r--r--sources1
3 files changed, 158 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..3f524cc 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/vaderSentiment-3.3.2.tar.gz
diff --git a/python-vadersentiment.spec b/python-vadersentiment.spec
new file mode 100644
index 0000000..6cf0f05
--- /dev/null
+++ b/python-vadersentiment.spec
@@ -0,0 +1,156 @@
+%global _empty_manifest_terminate_build 0
+Name: python-vaderSentiment
+Version: 3.3.2
+Release: 1
+Summary: VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains.
+License: MIT License
+URL: https://github.com/cjhutto/vaderSentiment
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/77/8c/4a48c10a50f750ae565e341e697d74a38075a3e43ff0df6f1ab72e186902/vaderSentiment-3.3.2.tar.gz
+BuildArch: noarch
+
+
+%description
+
+ VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is *specifically attuned to sentiments expressed in social media*. It is fully open-sourced under the `[MIT License] <http://choosealicense.com/>`_ (we sincerely appreciate all attributions and readily accept most contributions, but please don't hold us liable).
+
+ **Citation Information**
+
+ If you use either the dataset or any of the VADER sentiment analysis tools (VADER sentiment lexicon or Python code for rule-based sentiment analysis engine) in your research, please cite the above paper. For example:
+
+ **Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.**
+
+
+ * Code examples are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+ * Details about the scoring are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+ * VADER has been ported to Java, JavaScript, PHP, Scala, C#, Rust, and Go (see details and links to these on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+
+
+
+Keywords: vader,sentiment,analysis,opinion,mining,nlp,text,data,text analysis,opinion analysis,sentiment analysis,text mining,twitter sentiment,opinion mining,social media,twitter,social,media
+Platform: any
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Intended Audience :: Science/Research
+Classifier: License :: OSI Approved :: MIT License
+Classifier: Natural Language :: English
+Classifier: Programming Language :: Python :: 3.5
+Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
+Classifier: Topic :: Scientific/Engineering :: Information Analysis
+Classifier: Topic :: Text Processing :: Linguistic
+Classifier: Topic :: Text Processing :: General
+Description-Content-Type: text/x-rst
+
+
+%package -n python3-vaderSentiment
+Summary: VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains.
+Provides: python-vaderSentiment
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-vaderSentiment
+
+ VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is *specifically attuned to sentiments expressed in social media*. It is fully open-sourced under the `[MIT License] <http://choosealicense.com/>`_ (we sincerely appreciate all attributions and readily accept most contributions, but please don't hold us liable).
+
+ **Citation Information**
+
+ If you use either the dataset or any of the VADER sentiment analysis tools (VADER sentiment lexicon or Python code for rule-based sentiment analysis engine) in your research, please cite the above paper. For example:
+
+ **Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.**
+
+
+ * Code examples are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+ * Details about the scoring are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+ * VADER has been ported to Java, JavaScript, PHP, Scala, C#, Rust, and Go (see details and links to these on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+
+
+
+Keywords: vader,sentiment,analysis,opinion,mining,nlp,text,data,text analysis,opinion analysis,sentiment analysis,text mining,twitter sentiment,opinion mining,social media,twitter,social,media
+Platform: any
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Intended Audience :: Science/Research
+Classifier: License :: OSI Approved :: MIT License
+Classifier: Natural Language :: English
+Classifier: Programming Language :: Python :: 3.5
+Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
+Classifier: Topic :: Scientific/Engineering :: Information Analysis
+Classifier: Topic :: Text Processing :: Linguistic
+Classifier: Topic :: Text Processing :: General
+Description-Content-Type: text/x-rst
+
+
+%package help
+Summary: Development documents and examples for vaderSentiment
+Provides: python3-vaderSentiment-doc
+%description help
+
+ VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is *specifically attuned to sentiments expressed in social media*. It is fully open-sourced under the `[MIT License] <http://choosealicense.com/>`_ (we sincerely appreciate all attributions and readily accept most contributions, but please don't hold us liable).
+
+ **Citation Information**
+
+ If you use either the dataset or any of the VADER sentiment analysis tools (VADER sentiment lexicon or Python code for rule-based sentiment analysis engine) in your research, please cite the above paper. For example:
+
+ **Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.**
+
+
+ * Code examples are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+ * Details about the scoring are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+ * VADER has been ported to Java, JavaScript, PHP, Scala, C#, Rust, and Go (see details and links to these on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
+
+
+
+Keywords: vader,sentiment,analysis,opinion,mining,nlp,text,data,text analysis,opinion analysis,sentiment analysis,text mining,twitter sentiment,opinion mining,social media,twitter,social,media
+Platform: any
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Intended Audience :: Science/Research
+Classifier: License :: OSI Approved :: MIT License
+Classifier: Natural Language :: English
+Classifier: Programming Language :: Python :: 3.5
+Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
+Classifier: Topic :: Scientific/Engineering :: Information Analysis
+Classifier: Topic :: Text Processing :: Linguistic
+Classifier: Topic :: Text Processing :: General
+Description-Content-Type: text/x-rst
+
+
+%prep
+%autosetup -n vaderSentiment-3.3.2
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-vaderSentiment -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 3.3.2-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..2716606
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+a04f43dfcc57119bcabaa12f356c8c40 vaderSentiment-3.3.2.tar.gz